Harvester is now production-ready and generally available  

Tuesday, 21 December, 2021

2021 has been a memorable year for the Harvester team. In May, SUSE hosted the first virtual SUSECON, where we announced the beta release of Harvester, alongside a cast of new innovative open source projects from the SUSE Rancher engineering team. In October, for the first time in two years, we were able to meet our industry peers and the community face-to-face at KubeCon North America where we announced Harvester’s plans to integrate with our leading Kubernetes management platform SUSE Rancher.

Today, we’re closing out the year with one more major announcement – that Harvester is now production-ready and generally available for our customers and the open source community! Harvester’s highly anticipated release marks a major milestone for SUSE as it is the first brand new product release since SUSE’s acquisition of Rancher Labs and expands SUSE’s portfolio capabilities into the hyperconverged infrastructure space.

Why did SUSE build an HCI product?

This year, SUSE made a commitment to our customers and the community to help them ‘Choose Open’ and innovate across their business using open source solutions. Harvester plays an integral piece in SUSE’s portfolio as it showcases our commitment in enriching the open source landscape while providing our customers and the community valuable solutions to help them solve their infrastructure challenges.

Harvester is a natural extension to our existing strong background in container management. It takes an open, interoperable approach to hyperconverged infrastructure and addresses common challenges, including managing sprawl, siloing of teams and resource limitations faced by IT operators who need to manage modern environments comprised of both virtualized and containerized workloads.

What’s Harvester?

Harvester is a 100% free-to-use, open source modern hyperconverged infrastructure solution that is built on a foundation of cloud native solutions including Kubernetes, Longhorn and Kubevirt. It has been designed as an enterprise-ready turnkey solution that gives operators a familiar operating experience like other proprietary HCI solutions in the market.

Though built on Kubernetes, it does not require any pre-existing knowledge to operate. Its integration with SUSE Rancher gives users the ability to operate their virtualized and container workloads all within the same platform while also creating an easy, low-risk pathway for organizations looking to adopt cloud native solutions into their infrastructure modernization strategy. Learn more about the technical capabilities of Harvester in this blog by Sheng Yang, Engineering Lead for Harvester.

Image 1. Harvester as part of SUSE Rancher Console

Harvester integrates with SUSE Rancher

With today’s GA, one of the biggest milestones the Harvester engineering team has achieved this year is the integration of Harvester into the SUSE Rancher console.

As organizations look to accelerate their IT modernization journey, complexity rapidly grows as teams adopt multiple different solutions to help them manage their ever-expanding environments.  Organizations now need tools that can help them both confidently scale environments that simultaneously efficiently manages and governs their stack. Harvester and SUSE Rancher together addresses these needs by consolidating the management of operations for virtualized and containerized workloads – all accessible in a single Rancher platform instance.

This means both Harvester and Rancher clusters can be managed side by side within Rancher’s instance, reducing operators’ need to use separate solutions between the two workloads. Users can access the Harvester UI directly from within the Rancher console. In addition, Harvester clusters also have the ability to access the same features available to Rancher clusters, including authentication, role-based access control and cluster provisioning.

Another opportunity with Harvester and Rancher is that organizations who may be early in their modernization journey can use both open source solutions together as a low-risk pathway to adopting cloud native technology across their stack. Both solutions promote innovation by encouraging organizations to build their confidence in integrating modern technology to develop cloud native applications. For extra piece of mind, customers who may need an additional helping hand can have access SUSE’s support subscription available for Harvester.

Harvester’s general availability extends further than its integration with SUSE Rancher and its ability to consolidate VM and container workloads. Learn more from Robert Sirchia, Senior Technical Evangelist at SUSE, as he explores how Harvester’s cloud-native lightweight nature can be applied at the edge and also used as a platform to modernize applications.

Don’t miss the SUSE and Rancher community’s Global Online Meetup introducing Harvester on the 19th of January 2022 and 10am Pacific Time – alternatively find a local Harvester meetup near you. Learn more about Harvester here or get started today.

Harvester: A Modern Infrastructure for a Modern Platform

Tuesday, 21 December, 2021

Cloud platforms are not new — they have been around for a few years. And containers have been around even longer. Together, they have changed the way we think about software. Since the creation of these technologies, we have focused on platforms and apps. And who could blame anyone? Containers and Kubernetes let us do things that were unheard of only a few years ago.

What about the software that runs the infrastructure to support all these advancements? Over the same time, we have seen advancements — some in open source but the most with proprietary solutions. Sure, there is nothing wrong with running open source on top of a proprietary solution. These systems have become very good at what they do: running virtual machines but not container or container platforms, for that matter.

The vast majority of this infrastructure software is proprietary. This means you need two different skill sets to manage each of these — one proprietary, one Kubernetes. This is a lot to put on one team; it’s almost unbearable to put on one individual. What if there was an open infrastructure that used the same concepts and management plane as Kubernetes? We could lower the learning curve by managing our clusters the same way we can manage our host. We trust Kubernetes to manage clusters — why not our hosts?

Harvester: Built on Open Cloud Native Technology

Harvester is a simple, elegant, and light hyperconverged infrastructure (HCI) solution built for running virtual machines and Kubernetes clusters on bare metal servers. With Harvester reaching General Availability, we can now manage our host with the same concepts and management plane as our clusters. Harvester is a modern infrastructure for a modern platform. Completely open source, this solution is built on Kubernetes and incorporates other cloud native solutions, including Longhorn and Kubevirt, and leveraging all of these technologies transparently to deliver a modern hypervisor. This gives Harvester endless possibilities with all the other projects that integrate with Kubernetes.

This means operators and infrastructure engineers can leverage their existing skill sets and will find in Harvester a familiar HCI experience. Harvester easily integrates into cloud native environments, and offers enterprise-grade, turnkey features without costly overhead of the proprietary alternatives — saving both time and money.

A Platform for the Edge

Harvester’s small footprint means it is a great choice for the unique demands of hardware at the edge. Harvester gives operators the ability to deploy and manage VMs and Kubernetes clusters on a single platform. And because it integrates into Rancher, Harvester clusters can be managed centrally using all the great tooling Rancher provides. Edge applications will also benefit from readily available enterprise-grade storage, without costly and specialized storage hardware required. This enables operators to keep compute and storage as close to the user as possible, without sacrificing management and security. Kubernetes is quickly becoming a standard for edge deployments, so an HCI that also speaks this language is beneficial.

Harvester is a great solution for data centers, which come in all shapes and sizes. Harvester’s fully integrated approach means you can use high-density hardware with low-cost local storage. This saves on equipment costs and the amount of rack space required. A Harvester cluster can be as small as three servers, or an entire rack. Yet it can run just as well in branch or small-office server rooms. And all of these locations can be centrally managed through Rancher.

A Platform for Modernizing Applications

Harvester isn’t just a platform for building cloud native applications but one that you can use to take applications from VMs to clusters. It allows operators to run VMs alongside clusters, giving developers the opportunity to start decomposing these monoliths to cloud native applications. With most applications, this takes months and sometimes years. With Harvester, there isn’t a rush. VMs and clusters live side by side with ease. It offers all of this in one platform with one management plane.

As cloud native technologies continue their trajectory as keys to digital transformation, next-gen HCI solutions need to offer functionality and simplicity with the capability to manage containerized and non-containerized workloads, storage and network requirements across any environment.


What’s unique about Harvester? You can use it to manage multiple clusters hosted on VMs or a Kubernetes distribution. It’s 100 percent open source and leverages proven technologies – so why not give it a try to simplify your infrastructure stack?  You’ll get a feature-rich operational experience in a single management platform, with the support of the open-source community behind it. We have seen the evolution of Harvester, from a fledgling open-source project to a full-on enterprise-ready HCI solution.

We hope you take a moment to download and give Harvester a try.

JOIN US at the Harvester Global Online Meetup – January  19 at 10am PT. Our product team will be on hand to answer your questions. Register here.

Harvester Integrates with Rancher: What Does This Mean for You?

Thursday, 21 October, 2021

Thousands of new technology solutions are created each year, all designed to help serve the open source community of developers and engineers who build better applications. In 2014, Rancher was founded as a software solution aiming to help simplify the lives of engineers building applications in the new market of containers.

Today, Rancher is a market-leading, open source solution supported by a rich community helping thousands of global organizations deliver Kubernetes at scale.

Harvester is a new project from the SUSE Rancher team. It is a 100% open source, Hyperconverged Infrastructure (HCI) solution that offers the same expected integrations as traditional commercial solutions while also incorporating beneficial components of Kubernetes. Harvester is built on a foundation of cloud native technology to bridge the gap between traditional HCI and cloud native solutions.

Why Is This Significant? 

Harvester addresses the intersection of traditional HCI frameworks and modern containerization strategies. Developed by SUSE’s team of Rancher engineers, Harvester preserves the core values of Rancher. This includes enriching the open source community by creating Harvester as a 100% open, interoperable, and reliable HCI solution that fits any environment while retaining the traditional functions of HCI solutions. This helps users efficiently manage and operate their virtual machine workloads.

When Harvester is used with Rancher, it provides cloud native users with a holistic platform to manage new cloud native environments, including Kubernetes and containers alongside legacy Virtual Machine (VM) workloads. Rancher and Harvester together can help organizations modernize their IT environment by simplifying the operations and management of workloads across their infrastructure, reducing the amount of operational debt.

What Can We Expect in the Rancher & Harvester Integration?

There are a couple of significant updates in this v0.3.0 of Harvester with Rancher. The integration with Rancher v2.6.1 gives users extended usability across both platforms, including importing and managing multiple Harvester clusters using the Virtualization Management feature in Rancher v2.6.1. In addition, users can also leverage the authentication mechanisms and RBAC control for multi-tenancy support available in Rancher.  

Harvester users can now provision RKE & RKE2 clusters within Rancher v2.6.1 using the built-in Harvester Node Driver. Additionally, Harvester can now provide built-in Load Balancer support and raw cluster persistent storage support to guest Kubernetes clusters.  

Harvester remains on track to hit its general availability v1.0.0 release later this year.

Learn more about the Rancher and Harvester integration here.  

You can also check out additional feature releases in v0.3.0 of Harvester on GitHub or at harvesterhci.io.

How to Manage Harvester 0.3.0 with Rancher 2.6.1 Running in a VM within Harvester

Wednesday, 20 October, 2021

What I liked about the release of Harvester 0.2.0 was the ease of enabling the embedded Rancher server, which allowed you to create Kubernetes clusters in the same Harvester cluster.

With the release of Harvester 0.3.0, this option was removed in favor of installing Rancher 2.6.1 separately and then importing your Harvester cluster into Rancher, where you could manage it. A Harvester node driver is provided with Rancher 2.6.1 to allow you to create Kubernetes clusters in the same Harvester 0.3.0 cluster.

I replicated my Harvester 0.2.0 plus the Rancher server experience using Harvester 0.3.0 and Rancher 2.6.1.

There’s no upgrade path from Harvester 0.2.0 to 0.3.0, so the first step was reinstalling my Intel NUC with Harvester 0.3.0 following the docs at: https://docs.harvesterhci.io/v0.3/install/iso-install/.

Given that my previous Harvester 0.2.0 install included Rancher, I figured I’d install Rancher in a VM running on my newly installed Harvester 0.3.0 node – but which OS would I use? With Rancher being deployed using a single Docker container, I was looking for a small, lightweight OS that included Docker. From past experience, I knew that openSUSE Leap had slimmed down images of its distribution available at https://get.opensuse.org/leap/ – click the alternative downloads link immediately under the initial downloads. Known as Just enough OS (JeOS), these are available for both Leap and Tumbleweed (their rolling release). I opted for Leap, so I created an image using the URL for the OpenStack Cloud image (trust me – the KVM and XEN image hangs on boot).

Knowing that I wanted to be able to access Rancher on the same network my Harvester node was attached to, I also enabled  Advanced | Settings | vlan (VLAN) and created a network using VLAN ID 1 (Advanced | Networks).

The next step is to install Rancher in a VM. While I could do this manually, I prefer automation and wanted to do something I could reliably repeat (something I did a lot while getting this working) and perhaps adapt when installing future versions. When creating a virtual machine, I was intrigued by the user data and network data sections in the advanced options tab, referenced in the docs at https://docs.harvesterhci.io/v0.3/vm/create-vm/, along with some basic examples. I knew from past experience that cloud-init could be used to initialize cloud instances, and with the openSUSE OpenStack Cloud images using cloud-init, I wondered if this could be used here. According to the examples in the cloud-init docs at https://cloudinit.readthedocs.io/en/latest/topics/examples.html, it can!

When creating the Rancher VM, I gave it 1 CPU with a 4-core NUC and Harvester 0.3.0 not supporting over-provisioning (it’s a bug – phew!) – I had to be frugal! Through trial and error, I also found that the minimum memory required for Rancher to work is 3 GB. I chose my openSUSE Leap 15.3 JeOS OpenStack Cloud image on the volumes tab, and on the networks tab, I chose my custom (VLAN 1) network.

The real work is done on the advanced options tab. I already knew JeOS didn’t include Docker, so that would need to be installed before I could launch the Docker container for Rancher. I also knew the keyboard wasn’t set up for me in the UK, so I wanted to fix that too. Plus, I’d like a message to indicate it was ready to use. I came up with the following User Data:

password: changeme
  - docker
  - localectl set-keymap uk
  - systemctl enable --now docker
  - docker run --name=rancher -d --restart=unless-stopped -p 80:80 -p 443:443 --privileged rancher/rancher:v2.6.1
  - until curl -sk -o /dev/null; do sleep 30s; done
final_message: Rancher is ready!

Let me go through the above lines:

  • Line 1 sets the password of the default opensuse user – you will be prompted to change this the first time you log in as this user, so don’t set it to anything secret!
  • Lines 2 & 3 install the docker package.
  • Line 4 says we’ll run some commands once it’s booted the first time.
  • Line 5 sets the UK keyboard.
  • Line 6 enables and starts the Docker service.
  • Line 7 pulls and runs the Docker container for Rancher 2.6.1 – this is the same line as the Harvester docs, except I’ve added “–name=rancher” to make it easier when you need to find the Bootstrap Password later.
    NOTE: When you create the VM, this line will be split into two lines with an additional preceding line with “>-” – it will look a bit different, but it’s nothing to worry about!
  • Line 8 is a loop checking for the Rancher server to become available – I test localhost, so it works regardless of the assigned IP address.
  • Line 9 prints out a message saying it’s finished (which happens after the previous loop completes).

An extra couple of lines will be automatically added when you click the create button but don’t click it yet as we’re not done!

This still left a problem with which IP address I use to access Rancher? With devices being assigned random IP addresses via DHCP, how do I control which address is used? Fortunately, the Network Data sections allow us to set a static address (and not have to mess with config files or run custom scripting within the VM):

  version: 1
    - type: physical
      name: eth0
        - type: static
    - type: nameserver
        - example.com

I won’t go through all the lines above but will call out those you need to change for your own network:

  • Line 8 sets the IP address to use with the CIDR netmask (/24 means
  • Line 9 sets the default gateway.
  • Line 12 sets the default DNS nameserver.
  • Line 14 sets the default DNS search domain.

See https://cloudinit.readthedocs.io/en/latest/topics/network-config-format-v1.html# for information on the other lines.

Unless you unticked the start virtual machine on creation, your VM should start booting once you click the Create button. If you open the Web Console in VNC, you’ll be able to keep an eye on the progress of your VM. When you see the message Rancher is ready, you can try accessing Rancher in a web browser at the IP address you specified above. Depending on the web browser you’re using and its configuration, you may see warning messages about the self-signed certificate Rancher is using.

The first time you log in to Rancher, you will be prompted for the random bootstrap password which was generated. To get this, you can SSH as the opensuse user to your Rancher VM, then run:

sudo docker logs rancher 2>&1 | grep "Bootstrap Password:"

Copy the password and paste it into the password field of the Rancher login screen, then click the login with Local User button.

You’re then prompted to set a password for the default admin user. Unless you can remember random strings or use a password manager, I’d set a specific password. You also need to agree to the terms and conditions for using Rancher!

Finally, you’re logged into Rancher, but we’re not entirely done yet as we need to add our Harvester cluster. To do this, click on the hamburger menu and then the Virtualization Management tab. Don’t panic if you see a failed whale error – just try reloading.

Clicking the Import Existing button will give you some registration commands to run on one of your Harvester node(s).

To do this, SSH to your Harvester node as the rancher user and then run the first kubectl command prefixed with sudo. Unless you’ve changed your Harvester installation, you’ll also need to run the curl command, again prefixing the kubectl command with sudo. The webpage should refresh, showing your Harvester cluster’s management page. If you click the Harvester Cluster link or tab, your Harvester cluster should be listed. Clicking on your cluster name should show something familiar!

Finally, we need to activate the Harvester node driver by clicking the hamburger menu and then the Cluster Management tab. Click Drivers, then Node Drivers, find Harvester in the list, and click Activate.

Now we have Harvester 0.3.0 integrated with Rancher 2.6.1, running similarly to Harvester 0.2.0, although sacrificing 1 CPU (which will be less of an issue once the CPU over-provisioning bug is fixed) and 3GB RAM.

Admittedly, running Rancher within a VM in the same Harvester you’re managing through Rancher doesn’t seem like the best plan, and you wouldn’t do it in production, but for the home lab, it’s fine. Just remember not to chop off the branch you’re standing on!

Tags: ,, Category: Uncategorized Comments closed

Harvester: Intro and Setup    

Tuesday, 17 August, 2021
I mentioned about a month back that I was using Harvester in my home lab. I didn’t go into much detail, so this post will bring some more depth. We will cover what Harvester does, as well as my hardware, installation, setup and how to deploy your first virtual machine. Let’s get started.

What is Harvester?

Harvester is Rancher’s open source answer to a hyperconverged infrastructure platform. Like most things Rancher is involved with, it is built on Kubernetes using tools like KubeVirt and Longhorn. KubeVirt is an exciting project that leverages KVM and libvirt to run virtual machines inside Kubernetes; this allows you to run both containers and VMs in your cluster. It reduces operational overhead and provides consistency. This combination of tried and tested technologies provides an open source solution in this space.

It is also designed to be used with bare metal, making it an excellent option for a home lab.


If you check the hardware requirements, you will notice they focus more on business usage. So far, my personal experience says that you want at least a 4 core/8 thread CPU, 16GB of RAM, and a large SSD, preferably an NVMe drive. Anything less resource-wise doesn’t leave enough capacity for running many containers or VMs. I will install it on an Intel NUC 8i5BEK, which has an Intel Core i5-8259U. As far as RAM, it has 32GB of RAM and a 512GB NVMe drive. It can handle running Harvester without any issues. Of course, this is just my experience; your experience may differ.


Harvester ships as an ISO, which you can download on the GitHub Releases page. You can pull it quickly using wget.

$ wget https://releases.rancher.com/harvester/v0.2.0/harvester-amd64.iso

Once you have it downloaded, you will need to create a bootable USB. I typically use Balena Etcher since it is cross-platform and intuitive. Once you have a bootable USB, place it in the machine you want to use and boot the drive. This screen should greet you:

Select “New Cluster”:

Select the drive you want to use.

Enter your hostname, select your network interface, and make sure you use automatic DHCP.

You will then be prompted to enter your cluster token. This can be any phrase you want; I recommend using your password manager to generate one.

Set a password to use, and remember that the default user name is rancher.

The following several options are attractive, especially if you want to leverage your SSH keys used in GitHub. Since this is a home lab, I left the SSH keys, proxy and cloud-init setup blank. In an enterprise environment, this would be really useful. Now you will see the final screen before installation. Verify that everything is configured to your desires before proceeding.

If it all looks great, proceed with the installation. It will take a few minutes to complete; when it does, you will need to reboot.

After the reboot, the system will startup, and you will see a screen letting you know the URL for Harvester and the system’s status. Wait until it reports that Harvester is ready before trying to connect.

Great! It is now reporting that it is up and running, so it’s now time to set up Harvester.

Initial Setup

We can navigate to the URL listed once the OS boots. Mine is https://harvest:30443. It uses a self-signed certificate by default, so you will see a warning in your browser. Just click on “advanced” to proceed, and accept it. Set a password for the default admin account.

Now you should see the dashboard and the health of the system.

I like to disable the default account and add my own account for authentication. Probably not necessary for a home lab, but a good habit to get into. First, you need to navigate to it.

Now log out and back in with your new account. Once that’s finished, we can create our first VM.

Deploying Your First VM

Harvester has native support for qcow2 images and can import those from a URL. Let’s grab the URL for openSUSE Leap 15.3 JeOS image.


The JeOS image for openSUSE is roughly 225MB, which is a perfect size for downloading and creating VMs quickly. Let’s make the image in Harvester.

Create a new image, and add the URL above as the image URL.

You should now see it listed.

Now we can create a VM using that image. Navigate to the VM screen.

Once we’ve made our way to the VM screen, we’ll create a new VM.

When that is complete, the VM will show up in the list. Wait until it has been started, then you can start using it.

Wrapping Up

In this article, I wanted to show you how to set up VMs with Harvester, even starting from scratch! There are plenty of features to explore and plenty more on the roadmap. This project is still early in its life, so now is a great time to jump in and get involved with its direction.

Hyperconverged Infrastructure and Harvester

Monday, 2 August, 2021

Virtual machines (VMs) have transformed infrastructure deployment and management. VMs are so ubiquitous that I can’t think of a single instance where I deployed production code to a bare metal server in my many years as a professional software engineer.

VMs provide secure, isolated environments hosting your choice of operating system while sharing the resources of the underlying server. This allows resources to be allocated more efficiently, reducing the cost of over-provisioned hardware.

Given the power and flexibility provided by VMs, it is common to find many VMs deployed across many servers. However, managing VMs at this scale introduces challenges.

Managing VMs at Scale

Hypervisors provide comprehensive management of the VMs on a single server. The ability to create new VMs, start and stop them, clone them, and back them up are exposed through simple management consoles or command-line interfaces (CLIs).

But what happens when you need to manage two servers instead of one? Suddenly you find yourself having first to gain access to the appropriate server to interact with the hypervisor. You’ll also quickly find that you want to move VMs from one server to another, which means you’ll need to orchestrate a sequence of shutdown, backup, file copy, restore and boot operations.

Routine tasks performed on one server become just that little bit more difficult with two, and quickly become overwhelming with 10, 100 or 1,000 servers.

Clearly, administrators need a better way to manage VMs at scale.

Hyperconverged Infrastructure

This is where Hyperconverged Infrastructure (HCI) comes in. HCI is a marketing term rather than a strict definition. Still, it is typically used to describe a software layer that abstracts the compute, storage and network resources of multiple (often commodity or whitebox) servers to present a unified view of the underlying infrastructure. By building on top of the virtualization functionality included in all major operating systems, HCI allows many systems to be managed as a single, shared resource.

With HCI, administrators no longer need to think in terms of VMs running on individual servers. New hardware can be added and removed as needed. VMs can be provisioned wherever there is appropriate capacity, and operations that span servers, such as moving VMs, are as routine with 2 servers as they are with 100.


Harvester, created by Rancher, is open source HCI software built using Kubernetes.

While Kubernetes has become the defacto standard for container orchestration, it may seem like an odd choice as the foundation for managing VMs. However, when you think of Kubernetes as an extensible orchestration platform, this choice makes sense.

Kubernetes provides authentication, authorization, high availability, fault tolerance, CLIs, software development kits (SDKs), application programming interfaces (APIs), declarative state, node management, and flexible resource definitions. All of these features have been battle tested over the years with many large-scale clusters.

More importantly, Kubernetes orchestrates many kinds of resources beyond containers. Thanks to the use of custom resource definitions (CRDs), and custom operators, Kubernetes can describe and provision any kind of resource.

By building on Kubernetes, Harvester takes advantage of a well tested and actively developed platform. With the use of KubeVirt and Longhorn, Harvester extends Kubernetes to allow the management of bare metal servers and VMs.

Harvester is not the first time VM management has been built on top of Kubernetes; Rancher’s own RancherVM is one such example. But these solutions have not been as popular as hoped:

We believe the reason for this lack of popularity is that all efforts to date to manage VMs in container platforms require users to have substantial knowledge of container platforms. Despite Kubernetes becoming an industry standard, knowledge of it is not widespread among VM administrators.

To address this, Harvester does not expose the underlying Kubernetes platform to the end user. Instead, it presents more familiar concepts like VMs, NICs, ISO images and disk volumes. This allows Harvester to take advantage of Kubernetes while giving administrators a more traditional view of their infrastructure.

Managing VMs at Scale

The fusion of Kubernetes and VMs provides the ability to perform common tasks such as VM creation, backups, restores, migrations, SSH-Key injection and more across multiple servers from one centralized administration console.

Consolidating virtualized resources like CPU, memory, network, and storage allows for greater resource utilization and simplified administration, allowing Harvester to satisfy the core premise of HCI.


HCI abstracts the resources exposed by many individual servers to provide administrators with a unified and seamless management interface, providing a single point to perform common tasks like VM provisioning, moving, cloning, and backups.

Harvester is an HCI solution leveraging popular open source projects like Kubernetes, KubeVirt, and Longhorn, but with the explicit goal of not exposing Kubernetes to the end user.

The end result is an HCI solution built on the best open source platforms available while still providing administrators with a familiar view of their infrastructure.

Download Harvester from the project website and learn more from the project documentation.

Meet the Harvester developer team! Join our free Summer is Open session on Harvester: Tuesday, July 27 at 12pm PT and on demand. Get details about the project, watch a demo, ask questions and get a challenge to complete offline.

Announcing Harvester Beta Availability

Friday, 28 May, 2021

It has been five months since we announced project Harvester, open source hyperconverged infrastructure (HCI) software built using Kubernetes. Since then, we’ve received a lot of feedback from the early adopters. This feedback has encouraged us and helped in shaping Harvester’s roadmap. Today, I am excited to announce the Harvester v0.2.0 release, along with the Beta availability of the project!

Let’s take a look at what’s new in Harvester v0.2.0.

Raw Block Device Support

We’ve added the raw block device support in v0.2.0. Since it’s a change that’s mostly under the hood, the updates might not be immediately obvious to end users. Let me explain more in detail:

In Harvester v0.1.0, the image to VM flow worked like this:

  1. Users added a new VM image.

  2. Harvester downloaded the image into the built-in MinIO object store.

  3. Users created a new VM using the image.

  4. Harvester created a new volume, and copied the image from the MinIO object store.

  5. The image was presented to the VM as a block device, but it was stored as a file in the volume created by Harvester.

This approach had a few issues:

  1. Read/write operations to the VM volume needed to be translated into reading/writing the image file, which performed worse compared to reading/writing the raw block device, due to the overhead of the filesystem layer.

  2. If one VM image is used multiple times by different VMs, it was replicated many times in the cluster. This is because each VM had its own copy of the volume, even though the majority of the content was likely the same since they’re coming from the same image.

  3. The dependency on MinIO to store the images resulted in Harvester keeping MinIO highly available and expandable. Those requirements caused an extra burden on the Harvester management plane.

In v0.2.0, we’ve took another approach to tackle the problem, which resulted in a simpler solution that had better performance and less duplicated data:

  1. Instead of an image file on the filesystem, now we’re providing the VM with raw block devices, which allows for better performance for the VM.

  2. We’ve taken advantage of a new feature called Backing Image in the Longhorn v1.1.1, to reduce the unnecessary copies of the VM image. Now the VM image will be served as a read-only layer for all the VMs using it. Longhorn is now responsible for creating another copy-on-write (COW) layer on top of the image for the VMs to use.

  3. Since now Longhorn starts to manage the VM image using the Backing Image feature, the dependency of MinIO can be removed.

Image 02
A comprehensive view of images in Harvester

From the user experience perspective, you may have noticed that importing an image is instantaneous. And starting a VM based on a new image takes a bit longer due to the image downloading process in Longhorn. Later on, any other VMs using the same image will take significantly less time to boot up, compared to the previous v0.1.0 release and the disk IO performance will be better as well.

VM Live Migration Support

In preparation for the future upgrade process, VM live migration is now supported in Harvester v0.2.0.

VM live migration allows a VM to migrate from one node to another, without any downtime. It’s mostly used when you want to perform maintenance work on one of the nodes or want to balance the workload across the nodes.

One thing worth noting is, due to potential IP change of the VM after migration when using the default management network, we highly recommend using the VLAN network instead of the default management network. Otherwise, you might not be able to keep the same IP for the VM after migration to another node.

You can read more about live migration support here.

VM Backup Support

We’ve added VM backup support to Harvester v0.2.0.

The backup support provides a way for you to backup your VM images outside of the cluster.

To use the backup/restore feature, you need an S3 compatible endpoint or NFS server and the destination of the backup will be referred to as the backup target.

You can get more details on how to set up the backup target in Harvester here.

Image 03
Easily manage and operate your virtual machines in Harvester

In the meantime, we’re also working on the snapshot feature for the VMs. In contrast to the backup feature, the snapshot feature will store the image state inside the cluster, providing VMs the ability to revert back to a previous snapshot. Unlike the backup feature, no data will be copied outside the cluster for a snapshot. So it will be a quick way to try something experimental, but not ideal for the purpose of keeping the data safe if the cluster went down.

PXE Boot Installation Support

PXE boot installation is widely used in the data center to automatically populate bare-metal nodes with desired operating systems. We’ve also added the PXE boot installation in Harvester v0.2.0 to help users that have a large number of servers and want a fully automated installation process.

You can find more information regarding how to do the PXE boot installation in Harvester v0.2.0 here.

We’ve also provided a few examples of doing iPXE on public bare-metal cloud providers, including Equinix Metal. More information is available here.

Rancher Integration

Last but not least, Harvester v0.2.0 now ships with a built-in Rancher server for Kubernetes management.

This was one of the most requested features since we announced Harvester v0.1.0, and we’re very excited to deliver the first version of the Rancher integration in the v0.2.0 release.

For v0.2.0, you can use the built-in Rancher server to create Kubernetes clusters on top of your Harvester bare-metal clusters.

To start using the built-in Rancher in Harvester v0.2.0, go to Settings, then set the rancher-enabled option to true. Now you should be able to see a Rancher button on the top right corner of the UI. Clicking the button takes you to the Rancher UI.

Harvester and Rancher share the authentication process, so once you’re logged in to Harvester, you don’t need to redo the login process in Rancher and vice versa.

If you want to create a new Kubernetes cluster using Rancher, you can follow the steps here. A reminder that VLAN networking needs to be enabled for creating Kubernetes clusters on top of the Harvester, since the default management network cannot guarantee a stable IP for the VMs, especially after reboot or migration.

What’s Next?

Now with v0.2.0 behind us, we’re working on the v0.3.0 release, which will be the last feature release before Harvester reaches GA.

We’re working on many things for v0.3.0 release. Here are some highlights:

  • Built-in load balancer
  • Rancher 2.6 integration
  • Replace K3OS with a small footprint OS designed for the container workload
  • Multi-tenant support
  • Multi-disk support
  • VM snapshot support
  • Terraform provider
  • Guest Kubernetes cluster CSI driver
  • Enhanced monitoring

You can get started today and give Harvester v0.2.0 a try via our website.

Let us know what you think via the Rancher User Slack #harvester channel. And start contributing by filing issues and feature requests via our github page.

Enjoy Harvester!

Meet Harvester, an HCI Solution for the Edge

Tuesday, 6 April, 2021

About six months ago, I learned about a new project called Harvester, our open source hyperconverged infrastructure (HCI) software built using Kubernetes, libvirt, kubevirt, Longhorn and minIO. At first, the idea of managing VMs via Kubernetes did not seem very exciting. “Why would I not just containerize the workloads or orchestrate the VM natively via KVM, Xen or my hypervisor of choice?” and that approach makes a lot of sense except for one thing: the edge. At the edge, Harvester provides a solution for a nightmarish technical challenge. Specifically, when one host must run the dreaded Windows legacy applications and modern containerized microservers. In this blog and the following tutorials, I’ll map out an edge stack and set up and install Harvester. Later I’ll use Fleet to orchestrate the entire host with OS and Kubernetes updates. We’ll then deploy the whole thing with a bit of Terraform, completing the solution.

At the edge, we often lack the necessities such as a cloud or even spare hardware. Running Windows VMs alongside your Linux containers provides much-needed flexibility while using the Kubernetes API to manage the entire deployment brings welcome simplicity and control. With K3s and Harvester (in app mode), you can maximize your edge node’s utility by allowing it to run Linux containers and Windows VMs, down to the host OS orchestrated via Rancher’s Continuous Delivery (Fleet) GitOps deployment tool. 

At the host, we start with SLES and Ubuntu. The system-update operator can be customized for other Linux operating systems.

We’ll use K3s as our Kubernetes distribution. K3s’ advantage here is indisputable: small footprint, less chatty datastore (SQLite when used in single master mode), and removal of cloud-based bloat present in most Kubernetes distributions, including our RKE.

Harvester has two modes of operation: HCI, where it can attach to another cluster as a VM hosting node or a Helm application deployed into an existing Kubernetes cluster. The application can be installed and operated via a Helm chart and CRDs, providing our node with the greatest flexibility. 

Later we’ll orchestrate it via a Rancher 2.5 cluster and our Continuous Delivery functionality, powered by Fleet. Underneath, Harvester uses libvirt, kubevirt, multus and minIO, installed by default with the Helm chart. We’ll add a Windows image and deploy a VM via a CRD once we finish installing Harvester. At the end, I’ll provide scripts to get the MVP deployed in Google Cloud Platform (GCP), so you can play along at home. Note that since multi-layered VMs require special CPU functionality, we can currently only test in GCP or Digital Ocean.

In summary, Rancher Continuous Delivery (Fleet), Harvester, and K3s on top of Linux can provide a solid edge application hosting solution capable of scaling to many teams and millions of edge devices. While it’s not the only solution, and you can use each component individually with other open source components, this is one solution that you can implement today, complete with instructions and tutorials. Drop me a note if it is helpful for you, and as always, you can reach out to our consulting services for expert assistance and advice.  


Tutorial Sections:

Setting up the Host Image on GCP

Walks you through the extra work needed to enable nested virtualization in GCP.

Create Test Cluster with K3s

Deploy a cluster and get ready for Harvester.

Deploying Harvester with Helm

Deploy the Harvester app itself.

Setting Up and Starting a Linux VM

Testing with an OpenSuse JeOS Leap 15 sp2

Setting Up and Starting a Windows VM

Testing with a pre-licensed windows 10 Pro vm

Automating Harvester via Terraform

Orchestrating the entire rollout in Terraform.

Setting Up The Host Image on GCP

When choosing the host for Harvester, k3os requires the least amount of customization for K3s. However, GCP (and Digital Ocean) requires some extra configuration to get nested virtualization working and enable us to run Harvester. I’ll show the steps with SLES, k3OS, and Ubuntu 20.04 LTS since the former uses the latter. Both images need a special license key passed in so GCP places them on hosts that support nested virtualization. You can find more info here.

Do not forget to initialize gcloud prior to starting and after deployment be sure to open up port 22 to enable access. You can open port 22 with the following gcloud command.

gcloud compute firewall-rules create allow-tcpssh --allow tcp:22

Build a Customized SUSE Linux Enterprise Server (SLES) Image

GCP publishes public images that can be used. Sles public images are stored in the project `suse-cloud` and we’ll get a standard image and then recreate it with the needed vm license. We’ll do this by first copying a public image onto a disk in my current project.

gcloud compute disks create sles-15-sp2 --image-project suse-cloud --image-family sles-15 --zone us-central1-b

That will create a disk called sles-15-sp2 based on the sles-15 family in zone us-central1-b. Next we’ll create an image local to our project that will use that disk and include the nested vm license.

gcloud compute images create sles-15-sp2 --source-disk sles-15-sp2 --family sles-15 --source-disk-zone us-central1-b --licenses "https://www.googleapis.com/compute/v1/projects/vm-options/global/licenses/enable-vmx"

That’s it! (Until we get to K3s configuration.)

Build a Customized Ubuntu Image

The process to create the Ubuntu image is much the same.

First, we’ll create a new disk in our project and load the public ubuntu 20.04 image.

gcloud compute disks create ubuntu-2004-lts --image-project ubuntu-os-cloud --image-family ubuntu-2004-lts --zone us-central1-b

Then we’ll build a new image locally in our project by passing the special key.

gcloud compute images create ubuntu-2004-lts --source-disk ubuntu-2004-lts --family ubuntu-2004-lts --source-disk-zone us-central1-b --licenses "https://www.googleapis.com/compute/v1/projects/vm-options/global/licenses/enable-vmx"

You can then move on to K3s setup unless you are configuring k3OS.

Create and Build a Custom k3OS Image

Since there is no k3OS image published currently for GCP’s nested virtualization, we’ll build our own.


To do the build itself, you’ll need a clean Ubuntu 20.04 installation with internet access. I used a new multipass instance with standard specs and it worked great. You can get it here]:

multipass launch --name gcp-builder

You’ll also need a GCP account with an active project.

Set Up the Tools Inside Local Builder VM

First, we need to install the GCP CLI. For k3os, we’ll need Packer, which we’ll install later.

Add Google to your ubuntu source list.

echo "deb https://packages.cloud.google.com/apt cloud-sdk main" | sudo tee -a /etc/apt/sources.list.d/google-cloud-sdk.list

Then we’ll need to add their key:

curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -

Update sources and install the cloud SDK:

sudo apt-get update && sudo apt-get install google-cloud-sdk

Last, we’ll initialize the SDK by logging in and selecting our project. Go ahead and select your zone. I used us-central1-b for all the instructions.

gcloud init

Create k3os Image (k3os)

We’ll need another tool called Packer to build the k3os image:

sudo apt-get install packer

The k3os github repo comes with a handy gcp builder. Skip this part to use the Ubuntu image directly. Otherwise:

git clone https://github.com/rancher/k3os.git

And check out the latest no-rc build:

git checkout v0.11.1

For the rest, we’ll cd into the k3os/package/packer/gcp directory:

cd k3os/package/packer/gcp

Here I manually edited the template.json file and simplified the image name and region to match my default (us-central1-b):

vi template.json

Update builders[0].image_name to ‘rancher-k3os’ and variables.region value to ‘us-central1-b’. Then, we need to pass the GCP license needed for nested virtualization builders[0].image_licenses to [“projects/vm-options/global/licenses/enable-vmx”].

Add your project’s ID to the environment as GCP_PROJECT_ID.


Add SSH Public Key to Image

I’m not sure why this was required, but the standard packer does not provide ssh access. I added the local google_cloud_engine key in ~/.ssh to the authorized_ssh_keys in the config.yml.

You can find more configuration options in the configuration section of the [installation docs.](https://github.com/rancher/k3os#configuration)

Google Cloud Service Account

Create a new service account with Cloud Build Service Account permissions. You can do this via the ui or cli: Google Console: https://console.cloud.google.com/iam-admin/serviceaccounts

Packer also provides [GCP service account creation instructions](https://www.packer.io/docs/builders/googlecompute) for the cli.

Either way, save the resulting configuration file as account.json in the gcp directory.

Finally, let’s run the image builder.

packer build template.json


Create a Test Cluster with K3s

To create the VM in GCP based on our new image, we need to specify the minimum CPU family that includes the nested virtualization tech and enough drive space to run everything.

SUSE Enterprise Linux 15 SP2


gcloud compute instances create harvester –zone us-central1-b –min-cpu-platform “Intel Haswell” –image sles-15-sp2 –machine-type=n1-standard-8 –boot-disk-size=200GB –tags http-server,https-server –can-ip-forward

You will then need to install libvirt, qemu-kvm, and setup app armor exception.

Ubuntu 20.04

The following command should create an ubuntu instance usable for our testing:

gcloud compute instances create harvester --zone us-central1-b --min-cpu-platform "Intel Haswell" --image ubuntu-2004-lts --machine-type=n1-standard-8 --boot-disk-size=200GB


If you set the firewall rule from the previous step, you can connect using the ssh key that Google created ~/.ssh/google_compute_engine. When connecting to the ubuntu instance, use the ubuntu username.


Deploying Harvester with Helm

Deploying Harvester is a three-step process and requires you to install Helm on the new cluster. Connect via ssh and install the application:

export VERIFY_CHECKSUM=false
 curl https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3 | bash
 cp /etc/rancher/k3s/k3s.yaml ~/.kube/config

Then clone the Harvester repository. 

git clone https://github.com/rancher/harvester

Then browse to harvester/deploy/charts:

cd harvester/deploy/charts

Then install the chart itself. This will take a few minutes:

helm upgrade --install harvester ./harvester --namespace harvester-system --set longhorn.enabled=true,minio.persistence.storageClass=longhorn,service.harvester.type=NodePort,multus.enabled=true --create-namespace

However, this hides the complexity of what is happening underneath. It installs Longhorn, minIO, and multus along with the kubevirt components. You can install them separately by disabling them in the Helm installation.

Note: Currently, it is not possible to use another storage type. However, the defaults would just not install anything and would create a broken system. So they must be specified despite lack of functional choice.

Setting Up and Starting a Linux VM

Currently, setting up a VM takes some effort. You must place the compatible image in an accessible URL so that Harvester can download it. For the Linux VM, we’ll use the UI, switching to CRDs for the Windows VM.

A Working VM

Harvester does not support all formats, but kvm and compressed kvm images will work.

Upload to a URL

I uploaded mine to s3 to make it easy, but any web-accessible storage will do.

You can use the manifest here to import an open sles joes 15.2 leap image:

apiVersion: harvester.cattle.io/v1alpha1
kind: VirtualMachineImage
 name: image-openjeos-leap-15sp2
# key: string
 generateName: image-openjeos-leap-15sp2
# key: string
 namespace: default
 displayName: opensles-leap-jeos-15-sp2
 url: >-

Download Via Harvester

Browse over to the images, select “add a new”, and input the URL to upload and store it in the included minIO installation.

Create a VM from Image

Once the image is fully uploaded, we can create a VM based on the image.

Remote Connection: VNC

If everything is working properly, you should be able to vnc into the new image.


Setting Up and Starting a Windows VM

The process for setting up a Windows VM is a bit more painful than a Linux VM. We need to pass options into the underlying yaml, so we’ll use these sample Windows CRDs and insert them to create our VM after image download.

Upload CRD for Image. We can use this CRD to grab a Windows CD image that I have stored on a web-accessible location:

apiVersion: harvester.cattle.io/v1alpha1
kind: VirtualMachineImage
 name: image-windows10
 field.cattle.io/description: windowsimage
 generateName: image-windows10
 namespace: default
 displayName: windows
 url: 'https://thecrazyrussian.s3.amazonaws.com/Win10_2004_English_x64.iso'

Upload CRD for VM

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
    kubevirt.io/latest-observed-api-version: v1alpha3
    kubevirt.io/storage-observed-api-version: v1alpha3
    - wrangler.cattle.io/VMController.UnsetOwnerOfDataVolumes
  labels: {}
  name: 'windows10'
  namespace: default
    - apiVersion: cdi.kubevirt.io/v1alpha1
      kind: DataVolume
          cdi.kubevirt.io/storage.import.requiresScratch: 'true'
          harvester.cattle.io/imageId: default/image-windows10
        creationTimestamp: null
        name: windows-cdrom-disk-win
            - ReadWriteOnce
              storage: 20Gi
          storageClassName: longhorn
          volumeMode: Filesystem
            certConfigMap: importer-ca-none
            url: 'http://minio.harvester-system:9000/vm-images/image-windows10'
    - apiVersion: cdi.kubevirt.io/v1alpha1
      kind: DataVolume
        creationTimestamp: null
        name: windows-rootdisk-win
            - ReadWriteOnce
              storage: 32Gi
          storageClassName: longhorn
          volumeMode: Filesystem
          blank: {}
  running: true
        harvester.cattle.io/diskNames: >-
        harvester.cattle.io/sshNames: '[]'
      creationTimestamp: null
        harvester.cattle.io/creator: harvester
        harvester.cattle.io/vmName: windows
          cores: 4
            - bootOrder: 1
n              cdrom:
                bus: sata
              name: cdrom-disk
            - disk:
                bus: virtio
              name: rootdisk
            - cdrom:
                bus: sata
              name: virtio-container-disk
            - disk:
                bus: virtio
              name: cloudinitdisk
            - bus: usb
              name: tablet
              type: tablet
            - masquerade: {}
              model: e1000
              name: default
          type: q35
            memory: 4Gi
      hostname: windows
        - name: default
          pod: {}
        - dataVolume:
            name: windows-cdrom-disk-win
          name: cdrom-disk
        - dataVolume:
            name: windows-rootdisk-win
          name: rootdisk
        - containerDisk:
            image: kubevirt/virtio-container-disk
          name: virtio-container-disk
        - cloudInitNoCloud:
            userData: |
              ssh_authorized_keys: []
          name: cloudinitdisk

Once both CRDs finish processing, the VM should start booting and you will be able to run the normal Windows install process via the console or VNC.

When it is time to select which drive to load Windows on, you’ll need to load the special Virtio driver from the cd already included in the VM above.

Select “Install Now”

Then “I do not have a product key”

Select “Windows 10 Pro”

“Accept the license”

Install the Virtio Storage Driver

You will then have to select the disk. Instead, select “Load Driver”

Select the AMD64 driver (depending on your VM) and load it.

You should be able to select your (non-empty) hard disk and continue installing Windows.

Automating Harvester via Terraform

We can automate all these components. For example, we can script the VM creation via bash or Terraform. We can use Fleet or any other GitOps tool to push out individual VM and image crds and updates to the entire edge device, from the OS to the applications. Let’s start with an integrated Terraform script responsible for deploying Rancher and Harvester on a single node K3s cluster in GCP. You must complete the previous steps for this to work.

git clone https://github.com/thecrazyrussian/terraform-harvester.git
cd terraform-harvester

Here we must edit the infra/terraform.tfvars.example file. We can copy it from the infra/terraform.tfvars.example:

cp terraform.tfvars.example terraform.tfvars

And edit it in our favorite editor:

vi terraform.tfvars

Once you set all the variables for your route53 zone, GCP account, and you’ve added credentials.json for gcp into the infra/ directory, you should be ready to `apply`. That should stand up a single node Rancher/Harvester cluster and deploy a Windows VM on to it for customization.

Browse to the nodeport where Harvester made itself available, log in with admin/password and start a console to the VM to configure it as you normally would.


If you enjoyed this demo, head over to the SUSE & Rancher Community and let us know how you plan to use Harvester.

Announcing Harvester: Open Source Hyperconverged Infrastructure (HCI) Software

Wednesday, 16 December, 2020

Today, I am excited to announce project Harvester, open source hyperconverged infrastructure (HCI) software built using Kubernetes. Harvester provides fully integrated virtualization and storage capabilities on bare-metal servers. No Kubernetes knowledge is required to use Harvester.

Why Harvester?

In the past few years, we’ve seen many attempts to bring VM management into container platforms, including our own RancherVM, and other solutions like KubeVirt and Virtlet. We’ve seen some demand for solutions like this, mostly for running legacy software side by side with containers. But in the end, none of these solutions have come close to the popularity of industry-standard virtualization products like vSphere and Nutanix.

We believe the reason for this lack of popularity is that all efforts to date to manage VMs in container platforms require users to have substantial knowledge of container platforms. Despite Kubernetes becoming an industry standard, knowledge of it is not widespread among VM administrators. They are familiar with concepts like ISO images, disk volumes, NICs and VLANS – not concepts like pods and PVCs.

Enter Harvester.

Project Harvester is an open source alternative to traditional proprietary hyperconverged infrastructure software. Harvester is built on top of cutting-edge open source technologies including Kubernetes, KubeVirt and Longhorn. We’ve designed Harvester to be easy to understand, install and operate. Users don’t need to understand anything about Kubernetes to use Harvester and enjoy all the benefits of Kubernetes.

Harvester v0.1.0

Harvester v0.1.0 has the following features:

Installation from ISO

You can download ISO from the release page on Github and install it directly on bare-metal nodes. During the installation, you can choose to create a new cluster or add the current node into an existing cluster. Harvester will automatically create a cluster based on the information you provided.

Install as a Helm Chart on an Existing Kubernetes Cluster

For development purposes, you can install Harvester on an existing Kubernetes cluster. The nodes must be able to support KVM through either hardware virtualization (Intel VT-x or AMD-V) or nested virtualization.

VM Lifecycle Management

Powered by KubeVirt, Harvester supports creating/deleting/updating operations for VMs, as well as SSH key injection and cloud-init.

Harvester also provides a graphical console and a serial port console for users to access the VM in the UI.

Storage Management

Harvester has a built-in highly available block storage system powered by Longhorn. It will use the storage space on the node, to provide highly available storage to the VMs inside the cluster.

Networking Management

Harvester provides several different options for networking.

By default, each VM inside Harvester will have a management NIC, powered by Kubernetes overlay networking.

Users can also add additional NICs to the VMs. Currently, VLAN is supported.

The multi-network functionality in Harvester is powered by Multus.

Image Management

Harvester has a built-in image repository, allowing users to easily download/manage new images for the VMs inside the cluster.

The image repository is powered by MinIO.

Image 01


To install Harvester, just load the Harvester ISO into your bare-metal machine and boot it up.

Image 02

For the first node where you install Harvester, select Create a new Harvester cluster.

Later, you will be prompted to enter the password that will be used to enter the console on the host, as well as “Cluster Token.” The Cluster Token is a token that’s needed later by other nodes that want to join the same cluster.

Image 03

Then you will be prompted to choose the NIC that Harvester will use. The selected NIC will be used as the network for the management and storage traffic.

Image 04

Once everything has been configured, you will be prompted to confirm the installation of Harvester.

Image 05

Once installed, the host will be rebooted and boot into the Harvester console.

Image 06

Later, when you are adding a node to the cluster, you will be prompted to enter the management address (which is shown above) as well as the cluster token you’ve set when creating the cluster.

See here for a demo of the installation process.

Alternatively, you can install Harvester as a Helm chart on your existing Kubernetes cluster, if the nodes in your cluster have hardware virtualization support. See here for more details. And here is a demo using Digital Ocean which supports nested virtualization.


Once installed, you can use the management URL shown in the Harvester console to access the Harvester UI.

The default user name/password is documented here.

Image 07

Once logged in, you will see the dashboard.

Image 08

The first step to create a virtual machine is to import an image into Harvester.

Select the Images page and click the Create button, fill in the URL field and the image name will be automatically filled for you.

Image 09

Then click Create to confirm.

You will see the real-time progress of creating the image on the Images page.

Image 10

Once the image is finished creating, you can then start creating the VM using the image.

Select the Virtual Machine page, and click Create.

Image 11

Fill in the parameters needed for creation, including volumes, networks, cloud-init, etc. Then click Create.

VM will be created soon.

Image 12

Once created, click the Console button to get access to the console of the VM.

Image 13

See here for a UI demo.

Current Status and Roadmap

Harvester is in the early stages. We’ve just released the v0.1.0 (alpha) release. Feel free to give it a try and let us know what you think.

We have the following items in our roadmap:

  1. Live migration support
  2. PXE support
  3. VM backup/restore
  4. Zero downtime upgrade

If you need any help with Harvester, please join us at either our Rancher forums or Slack, where our team hangs out.

If you have any feedback or questions, feel free to file an issue on our GitHub page.

Thank you and enjoy Harvester!