Contents

About This Guide xii

I ARCHITECTURE AND REQUIREMENTS 1

1 The SUSE OpenStack Cloud Architecture 2
  1.1 The Administration Server 3
  1.2 The Control Node(s) 4
  1.3 The Compute Nodes 6
  1.4 The Storage Nodes 6
  1.5 The Monitoring Node 7
  1.6 HA Setup 8

2 Considerations and Requirements 9
  2.1 Network 9
      Network Address Allocation 13 • Network Modes 17 • Accessing the Administration Server via a Bastion Network 21 • DNS and Host Names 21
  2.2 Persistent Storage 22
      Cloud Storage Services 22 • Storage Hardware Requirements 23
  2.3 SSL Encryption 26
  2.4 Hardware Requirements 28
      Administration Server 28 • Control Node 29 • Compute Node 29 • Storage Node 29
  2.5 Software Requirements 30
      Optional Component: SUSE Enterprise Storage 30 • Product and Update Repositories 31
2.6  High Availability  34
        High Availability of the Administration Server  34  •  High Availability of the Control Node(s)  35  •  High Availability of the Compute Node(s)  37  •  High Availability of the Storage Node(s)  38  •  Cluster Requirements and Recommendations  39  •  For More Information  42

2.7  Summary: Considerations and Requirements  42

2.8  Overview of the SUSE OpenStack Cloud Installation  44

II  SETTING UP THE ADMINISTRATION SERVER  46

3  Installing the Administration Server  47
3.1  Starting the Operating System Installation  47
3.2  Registration and Online Updates  47
3.3  Installing the SUSE OpenStack Cloud Extension  48
3.4  Partitioning  48
3.5  Installation Settings  49
        Software Selection  49  •  Firewall Settings  49

4  Installing and Setting Up an SMT Server on the Administration Server (Optional)  50
4.1  SMT Installation  50
4.2  SMT Configuration  50
4.3  Setting up Repository Mirroring on the SMT Server  52
        Adding Mandatory Repositories  52  •  Adding Optional Repositories  53  •  Updating the Repositories  53
4.4  For More Information  53

5  Software Repository Setup  54
5.1  Copying the Product Media Repositories  54
5.2 Update and Pool Repositories 57
Repositories Hosted on an SMT Server Installed on the Administration Server
58 · Repositories Hosted on a Remote SMT Server 58 · Repositories
Hosted on a SUSE Manager Server 58 · Alternative Ways to Make the
Repositories Available 60

5.3 Software Repository Sources for the Administration Server Operating
System 60

5.4 Repository Locations 61

6 Service Configuration: Administration Server Network Configuration 65

7 Crowbar Setup 67
7.1 User Settings 67

7.2 Networks 67
Separating the Admin and the BMC Network 69

7.3 Network Mode 70
Setting Up a Bastion Network 72

7.4 Repositories 74

7.5 Custom Network Configuration 75
Editing network.json 76 · Global Attributes 77 · Interface
Map 78 · Interface Map Example 80 · Network
Conduits 81 · Network Conduit Examples 86 · Network
Definitions 91 · Providing Access to External Networks 93 · Split Public
and Floating Networks on Different VLANs 94 · Adjusting the Maximum
Transmission Unit for the Admin and Storage Network 95 · Matching Logical
and Physical Interface Names with network-json-resolve 96

7.6 Setting Up Multiple External Networks 98
Configure the Neutron Barclamp 98 · Configure the New External
Network 98 · How the Network Bridges are Created 100
7.7 Crowbar Batch Command 100
YAML file format 101 • Top-level proposal attributes 102 • Node Alias Substitutions 103 • Options 103

8 Starting the SUSE OpenStack Cloud Crowbar installation 104

III SETTING UP OPENSTACK NODES AND SERVICES 108

9 The Crowbar Web Interface 109
9.1 Logging In 109
9.2 Overview: Main Elements 110
Nodes 111 • Barclamps 112 • Utilities 113 • Help 115
9.3 Deploying Barclamp Proposals 115
Creating, Editing and Deploying Barclamp Proposals 116 • Barclamp Deployment Failure 117 • Deleting a Proposal That Already Has Been Deployed 118 • Queuing/Dequeuing Proposals 119

10 Installing the OpenStack Nodes 120
10.1 Preparations 120
10.2 Node Installation 121
10.3 Converting Existing SUSE Linux Enterprise Server 12 SP2 Machines Into SUSE OpenStack Cloud Nodes 127
10.4 Post-Installation Configuration 128
Deploying Node Updates with the Updater Barclamp 128 • Configuring Node Updates with the SUSE Manager Client Barclamp 132 • Mounting NFS Shares on a Node 134 • Using an Externally Managed Ceph Cluster 136 • Accessing the Nodes 139 • Enabling SSL 140
10.5 Editing Allocated Nodes 141

11 Deploying the OpenStack Services 144
11.1 Deploying Pacemaker (Optional, HA Setup Only) 145
11.2 Deploying the Database  153
   HA Setup for the Database  154
11.3 Deploying RabbitMQ  156
   HA Setup for RabbitMQ  157  •  SSL Configuration for RabbitMQ  158
11.4 Deploying Keystone  162
   Authenticating with LDAP  164  •  HA Setup for Keystone  165
11.5 Deploying Ceph (optional)  165
   HA Setup for Ceph  169
11.6 Deploying Swift (optional)  169
   HA Setup for Swift  175
11.7 Deploying Glance  175
   HA Setup for Glance  179
11.8 Deploying Cinder  179
   HA Setup for Cinder  185
11.9 Deploying Neutron  186
   Using Infoblox IPAM Plug-in  190  •  HA Setup for Neutron  191
11.10 Deploying Nova  192
   HA Setup for Nova  197
11.11 Deploying Horizon (OpenStack Dashboard)  198
   HA Setup for Horizon  200
11.12 Deploying Heat (Optional)  200
   Enabling Identity Trusts Authorization (Optional)  201  •  HA Setup for Heat  203
11.13 Deploying Ceilometer (Optional)  203
   HA Setup for Ceilometer  206
11.14 Deploying Aodh  206
   HA Setup for Aodh  208
11.15 Deploying Manila  208
   HA Setup for Manila  212
11.16 Deploying Trove (Optional) 212
HA Setup for Trove 214

11.17 Deploying Tempest (Optional) 215
HA Setup for Tempest 217

11.18 Deploying Magnum (Optional) 217
HA Setup for Magnum 219

11.19 Deploying Barbican (Optional) 220
HA Setup for Barbican 222

11.20 Deploying Sahara 222
HA Setup for Sahara 223

11.21 Deploying Monasca 223

11.22 Deploying Ironic (optional) 229
Custom View Options 230 • Ironic Drivers 231 • Example Ironic Network Configuration 232

11.23 How to Proceed 243

11.24 Roles and Services in SUSE OpenStack Cloud 243

12 Limiting Users' Access Rights 247

12.1 Editing policy.json 247

12.2 Editing keystone_policy.json 249

12.3 Adjusting the Keystone Barclamp Proposal 250

12.4 Adjusting the Horizon Barclamp Proposal 250

13 Configuration Files for OpenStack Services 252

13.1 Default Configuration Files 252

13.2 Custom Configuration Files 252

13.3 Naming Conventions for Custom Configuration Files 253

13.4 Processing Order of Configuration Files 253
13.5 For More Information 253

IV SETTING UP NON-OPENSTACK SERVICES 254

14 Deploying the Non-OpenStack Components 255
14.1 Tuning the Crowbar Service 255
14.2 Configuring the NTP Service 255

V MAINTENANCE AND SUPPORT 257

15 SUSE OpenStack Cloud Maintenance 258
15.1 Keeping the Nodes Up-To-Date 258
15.2 Service Order on SUSE OpenStack Cloud Start-up or Shutdown 259
15.3 Upgrading from SUSE OpenStack Cloud 6 to SUSE OpenStack Cloud 7 261
   Requirements 261 • Upgrading Using the Web Interface 265 • Upgrading from the Command line 274
15.4 Upgrading to an HA Setup 283
15.5 Recovering Clusters to a Healthy State 286
   Symptoms of a Degraded Control Node Cluster 286 • Re-adding the Node to the Cluster 287 • Recovering Crowbar and Chef 287 • Cleaning Up Resources 288 • Removing the Maintenance Mode Flag from a Node 288 • Recovering From an Unresolvable DRBD Split Brain Situation 288
15.6 FAQ 290
15.7 Backing Up and Restoring the Administration Server 291
   Backup and Restore via the Crowbar Web interface 291 • Backup and Restore via the Command Line 292

16 Log Files 294
16.1 On the Administration Server 294
16.2 On All Other Crowbar Nodes 295
16.3 On the Control Node(s) 295
16.4 On Compute Nodes 296
16.5 On Nodes with Ceph Barclamp 296

17 Troubleshooting and Support 297
17.1 FAQ 297
17.2 Support 307
Applying PTFs (Program Temporary Fixes) Provided by the SUSE L3 Support 307

VI PROOF OF CONCEPTS DEPLOYMENTS 309
18 Building a SUSE OpenStack Cloud Test lab 310
18.1 Document Scope 310
18.2 SUSE OpenStack Cloud Key Features 310
18.3 Main Components 311
18.4 Objectives and Preparations 313
18.5 Hardware and Software Matrix 314
18.6 Network Topology 316
The network.json Network Control File 317 • The Network Mode 317 • Default Layout 318
18.7 Network Architecture 320
Network Architecture: Pre-Defined VLANs 321
18.8 Services Architecture 324
18.9 Proof of Concept Test Cases 325
Basic Test Cases 325 • Advanced Test Cases 325

A VMware vSphere Installation Instructions 326
A.1 Requirements 326
A.2 Preparing the VMware vCenter Server 326
About This Guide

SUSE® OpenStack Cloud is an open source software solution that provides the fundamental capabilities to deploy and manage a cloud infrastructure based on SUSE Linux Enterprise. SUSE OpenStack Cloud is powered by OpenStack, the leading community-driven, open source cloud infrastructure project. It seamlessly manages and provisions workloads across a heterogeneous cloud environment in a secure, compliant, and fully-supported manner. The product tightly integrates with other SUSE technologies and with the SUSE maintenance and support infrastructure.

In SUSE OpenStack Cloud, there are several different high-level user roles:

**SUSE OpenStack Cloud Operator**
Installs and deploys SUSE OpenStack Cloud on bare-metal, then installs the operating system and the OpenStack components. For detailed information about the operator's tasks and how to solve them, refer to SUSE OpenStack Cloud *Deployment Guide*.

**SUSE OpenStack Cloud Administrator**
Manages projects, users, images, flavors, and quotas within SUSE OpenStack Cloud. For detailed information about the administrator's tasks and how to solve them, refer to the OpenStack *Administrator Guide* and the SUSE OpenStack Cloud *Supplement to Administrator Guide and End User Guide*.

**SUSE OpenStack Cloud User**
End user who launches and manages instances, creates snapshots, and uses volumes for persistent storage within SUSE OpenStack Cloud. For detailed information about the user's tasks and how to solve them, refer to OpenStack *End User Guide* and the SUSE OpenStack Cloud *Supplement to Administrator Guide and End User Guide*.

This guide provides cloud operators with the information needed to deploy and maintain SUSE OpenStack Cloud administrative units, the Administration Server, the Control Nodes, and the Compute and Storage Nodes. The Administration Server provides all services needed to manage and deploy all other nodes in the cloud. The Control Node hosts all OpenStack components needed to operate virtual machines deployed on the Compute Nodes in the SUSE OpenStack Cloud. Each virtual machine (instance) started in the cloud will be hosted on one of the Compute Nodes. Object storage is managed by the Storage Nodes.

Many chapters in this manual contain links to additional documentation resources. These include additional documentation that is available on the system, and documentation available on the Internet.

1 Available Documentation

Note: Online Documentation and Latest Updates

Documentation for our products is available at [http://www.suse.com/documentation/](http://www.suse.com/documentation/), where you can also find the latest updates, and browse or download the documentation in various formats.

In addition, the product documentation is usually available in your installed system under `/usr/share/doc/manual`. You can also access the product-specific manuals and the upstream documentation from the Help links in the graphical Web interfaces.

The following documentation is available for this product:

Deployment Guide

Gives an introduction to the SUSE® OpenStack Cloud architecture, lists the requirements, and describes how to set up, deploy, and maintain the individual components. Also contains information about troubleshooting, support, and a glossary listing the most important terms and concepts for SUSE OpenStack Cloud.

Administrator Guide

Introduces the OpenStack services and their components.
Also guides you through tasks like managing images, roles, instances, flavors, volumes, shares, quotas, host aggregates, and viewing cloud resources. To complete these tasks, use either the graphical Web interface (OpenStack Dashboard, code name Horizon) or the OpenStack command line clients.

End User Guide

Describes how to manage images, instances, networks, object containers, volumes, shares, stacks, and databases. To complete these tasks, use either the graphical Web interface (OpenStack Dashboard, code name Horizon) or the OpenStack command line clients.
**Supplement to Administrator Guide and End User Guide**

A supplement to the SUSE OpenStack Cloud *Administrator Guide* and SUSE OpenStack Cloud *End User Guide*. It contains additional information for admins and end users that is specific to SUSE OpenStack Cloud.

**Overview**

A manual introducing SUSE OpenStack Cloud Monitoring. It is written for everybody interested in SUSE OpenStack Cloud Monitoring.

**OpenStack Operator’s Guide**

A manual for SUSE OpenStack Cloud operators describing how to prepare their OpenStack platform for SUSE OpenStack Cloud Monitoring. The manual also describes how the operators use SUSE OpenStack Cloud Monitoring for monitoring their OpenStack services.

**OpenStack Operator’s Guide**

A manual for system operators describing how to operate SUSE OpenStack Cloud Monitoring in single mode. The manual also describes how the operators use SUSE OpenStack Cloud Monitoring for monitoring their environment.

## 2 Feedback

Several feedback channels are available:

**Services and Support Options**

For services and support options available for your product, refer to [http://www.suse.com/support/](http://www.suse.com/support/).

**User Comments/Bug Reports**

We want to hear your comments about and suggestions for this manual and the other documentation included with this product. If you are reading the HTML version of this guide, use the Comments feature at the bottom of each page in the online documentation at [http://www.suse.com/documentation/](http://www.suse.com/documentation/).

If you are reading the single-page HTML version of this guide, you can use the *Report Bug* link next to each section to open a bug report at [https://bugzilla.suse.com/](https://bugzilla.suse.com/). A user account is needed for this.
Mail

For feedback on the documentation of this product, you can also send a mail to doc-team@suse.com. Make sure to include the document title, the product version, and the publication date of the documentation. To report errors or suggest enhancements, provide a concise description of the problem and refer to the respective section number and page (or URL).

3 Documentation Conventions

The following notices and typographical conventions are used in this documentation:

- **Warning**
  Vital information you must be aware of before proceeding. Warns you about security issues, potential loss of data, damage to hardware, or physical hazards.

- **Important**
  Important information you should be aware of before proceeding.

- **Note**
  Additional information, for example about differences in software versions.

- **Tip**
  Helpful information, like a guideline or a piece of practical advice.

- **tux > command**
  Commands that can be run by any user, including the root user.

- **root # command**
  Commands that must be run with root privileges. Often you can also prefix these commands with the sudo command to run them.

- **/etc/passwd**: directory names and file names
• **PLACEHOLDER**: replace **PLACEHOLDER** with the actual value

• **PATH**: the environment variable PATH

• **ls, --help**: commands, options, and parameters

• **user**: users or groups

• **Alt, Alt–F1**: a key to press or a key combination; keys are shown in uppercase as on a keyboard

• **File, File > Save As**: menu items, buttons

• **x86_64**: This paragraph is only relevant for the AMD64/Intel 64 architecture. The arrows mark the beginning and the end of the text block.

• **System z, POWER**: This paragraph is only relevant for the architectures **z Systems** and **POWER**. The arrows mark the beginning and the end of the text block.

• **Dancing Penguins** (Chapter **Penguins**, ↑Another Manual): This is a reference to a chapter in another manual.

4 About the Making of This Manual

This documentation is written in SUSEDoc, a subset of [DocBook 5](http://www.docbook.org). The XML source files were validated by **jing**, processed by **xsltproc**, and converted into XSL-FO using a customized version of Norman Walsh’s stylesheets. The final PDF is formatted through FOP from Apache Software Foundation. The open source tools and the environment used to build this documentation are provided by the DocBook Authoring and Publishing Suite (DAPS). The project’s home page can be found at [https://github.com/openSUSE/daps](https://github.com/openSUSE/daps).

The XML source code of this documentation can be found at [https://github.com/SUSE-Cloud/doc-cloud](https://github.com/SUSE-Cloud/doc-cloud).
I Architecture and Requirements

1 The SUSE OpenStack Cloud Architecture 2
2 Considerations and Requirements 9
1 The SUSE OpenStack Cloud Architecture

SUSE OpenStack Cloud is a managed cloud infrastructure solution that provides a full stack of cloud deployment and management services.

SUSE OpenStack Cloud 7 provides the following features:

- Open source software that is based on the OpenStack Newton release.

- Centralized resource tracking providing insight into activities and capacity of the cloud infrastructure for optimized automated deployment of services.

- A self-service portal enabling end users to configure and deploy services as necessary, and to track resource consumption (Horizon).

- An image repository from which standardized, pre-configured virtual machines are published (Glance).

- Automated installation processes via Crowbar using pre-defined scripts for configuring and deploying the Control Node(s) and Compute and Storage Nodes.

- Multi-tenant, role-based provisioning and access control for multiple departments and users within your organization.

- APIs enabling the integration of third-party software, such as identity management and billing solutions.

- Heterogeneous hypervisor support (Xen and KVM).

- An optional monitoring as a service solution, that allows to manage, track, and optimize the cloud infrastructure and the services provided to end users (SUSE OpenStack Cloud Monitoring, Monasca).

SUSE OpenStack Cloud is based on SUSE Linux Enterprise Server, OpenStack, Crowbar, and Chef. SUSE Linux Enterprise Server is the underlying operating system for all cloud infrastructure machines (also called nodes). The cloud management layer, OpenStack, works as the “Cloud Operating System”. Crowbar and Chef automatically deploy and manage the OpenStack nodes from a central Administration Server.
SUSE OpenStack Cloud is deployed to four different types of machines:

- one Administration Server for node deployment and management
- one or more Control Nodes hosting the cloud management services
- several Compute Nodes on which the instances are started
- several Storage Nodes for block and object storage

### 1.1 The Administration Server

The Administration Server provides all services needed to manage and deploy all other nodes in the cloud. Most of these services are provided by the Crowbar tool that—together with Chef—automates all the required installation and configuration tasks. Among the services provided by the server are DHCP, DNS, NTP, PXE, and TFTP.
The Administration Server also hosts the software repositories for SUSE Linux Enterprise Server and SUSE OpenStack Cloud, which are needed for node deployment. If no other sources for the software repositories are available, it can host the Subscription Management Tool (SMT), providing up-to-date repositories with updates and patches for all nodes.

1.2 The Control Node(s)

The Control Node(s) hosts all OpenStack components needed to orchestrate virtual machines deployed on the Compute Nodes in the SUSE OpenStack Cloud. OpenStack on SUSE OpenStack Cloud uses a PostgreSQL database, which is hosted on the Control Node(s). The following OpenStack components—if deployed—run on the Control Node(s):

- PostgreSQL database.
- Image (Glance) for managing virtual images.
- Identity (Keystone), providing authentication and authorization for all OpenStack components.
- Networking (Neutron), providing “networking as a service” between interface devices managed by other OpenStack services.
- Block Storage (Cinder), providing block storage.

- OpenStack Dashboard (Horizon), providing the Dashboard, a user Web interface for the OpenStack components.

- Compute (Nova) management (Nova controller) including API and scheduler.

- Message broker (RabbitMQ).

- Swift proxy server plus dispersion tools (health monitor) and Swift ring (index of objects, replicas, and devices). Swift provides object storage.

- Ceph master cluster monitor (Calamari), which must be deployed on a dedicated node.

- Hawk, a monitor for a pacemaker cluster (HA setup).

- Heat, an orchestration engine.

- Ceilometer server and agents. Ceilometer collects CPU and networking data for billing purposes.

- Trove, a Database-as-a-Service, which must be deployed on a dedicated node.

- Ironic, the OpenStack bare metal service for provisioning physical machines.

A single Control Node can become a performance bottleneck because it runs a lot of services from a central point in the SUSE OpenStack Cloud architecture. This is especially true for large SUSE OpenStack Cloud deployments. You can distribute the services listed above on more than one Control Node, and even run each service on its own node.

We recommend deploying certain parts of Networking (Neutron) on separate nodes for production clouds. See Section 11.9, “Deploying Neutron” for details.

You can separate authentication and authorization services from other cloud services, for stronger security, by hosting Identity (Keystone) on a separate node. Hosting Block Storage (Cinder, particularly the cinder-volume role) on a separate node when using local disks for storage enables you to customize your storage and network hardware to best meet your requirements. Trove, the Database-as-a-Service for SUSE OpenStack Cloud and Calamari, the server for Ceph management and monitoring, must always be deployed on dedicated Control Nodes.
Note: Moving Services in an Existing Setup

If you plan to move a service from one Control Node to another, we strongly recommended shutting down or saving all instances before doing so. Restart them after having successfully re-deployed the services. Moving services also requires stopping them manually on the original Control Node.

1.3 The Compute Nodes

The Compute Nodes are the pool of machines on which your instances are running. These machines need to be equipped with a sufficient number of CPUs and enough RAM to start several instances. They also need to provide sufficient hard disk space, see Section 2.2.2.3, “Compute Nodes” for details. The Control Node distributes instances within the pool of Compute Nodes and provides them with the necessary network resources. The OpenStack component Compute (Nova) runs on the Compute Nodes and provides the means for setting up, starting, and stopping virtual machines.

SUSE OpenStack Cloud supports several hypervisors, including KVM, VMware vSphere, and Xen. Each image that is started with an instance is bound to one hypervisor. Each Compute Node can only run one hypervisor at a time. You will choose which hypervisor to run on each Compute Node when deploying the Nova barclamp.

1.4 The Storage Nodes

The Storage Nodes are the pool of machines providing object or block storage. Object storage is provided by the OpenStack Swift component, while block storage is provided by Cinder. The latter supports several back-ends, including Ceph, that are deployed during the installation. Deploying Swift and Ceph is optional.
1.5 The Monitoring Node

The Monitoring Node is the node that has the `monasca-server` role assigned. It hosts most services needed for SUSE OpenStack Cloud Monitoring, our Monasca-based monitoring and logging solution. The following services run on this node:

Monitoring API
The Monasca Web API that is used for sending metrics by Monasca agents, and retrieving metrics with the Monasca command line client and the Monasca Grafana dashboard.

Message Queue
A Kafka instance used exclusively by SUSE OpenStack Cloud Monitoring.

Persister
Stores metrics and alarms in InfluxDB.

Notification Engine
Consumes alarms sent by the Threshold Engine and sends notifications (e.g. via email).

Threshold Engine
Based on Apache Storm. Computes thresholds on metrics and handles alarming.

Metrics and Alarms Database
An InfluxDB database for storing metrics alarm history.

Config Database
A dedicated MariaDB instance used only for monitoring related data.

Log API
The Monasca Web API that is used for sending log entries by Monasca agents, and retrieving log entries with the Kibana Server.

Log Transformer
Transforms raw log entries sent to the Log API into a format suitable for storage.

Log Metrics
Sends metrics about high severity log messages to the Monitoring API.

Log Persister
Stores logs processed by Monasca Log Transformer in the Log Database.

Kibana Server
A graphical web frontend for querying the Log Database.
Log Database
An Elasticsearch database for storing logs.

Zookeeper
Cluster synchronization for Kafka and Storm.

Currently there can only be one Monitoring node. Clustering support is planned for a future release. We strongly recommend using a dedicated physical node meeting the requirements outlined in the next chapter and without any other services as a Monitoring Node.

1.6 HA Setup

A failure of components in SUSE OpenStack Cloud can lead to system downtime and data loss. To prevent this, set up a High Availability (HA) cluster consisting of several nodes. You can assign certain roles to this cluster instead of assigning them to individual nodes. As of SUSE OpenStack Cloud 7, Control Nodes and Compute Nodes can be made highly available.

For all HA-enabled roles, their respective functions are automatically handled by the clustering software SUSE Linux Enterprise High Availability Extension. The High Availability Extension uses the Pacemaker cluster stack with Pacemaker as cluster resource manager, and Corosync as the messaging/infrastructure layer.

View the cluster status and configuration with the cluster management tools HA Web Console (Hawk) or the crm shell.

⚠️ Important: Do Not Change the Configuration

Use the cluster management tools only for viewing. All of the clustering configuration is done automatically via Crowbar and Chef. If you change anything via the cluster management tools you risk breaking the cluster. Changes done there may be reverted by the next run of Chef anyway.

A failure of the OpenStack infrastructure services (running on the Control Nodes) can be critical and may cause downtime within the cloud. For more information on making those services highly-available and avoiding other potential points of failure in your cloud setup, refer to Section 2.6, “High Availability”.

Section 2.6, “High Availability”.
2 Considerations and Requirements

Before deploying SUSE OpenStack Cloud, there are some requirements to meet and architectural decisions to make. Read this chapter thoroughly first, as some decisions need to be made before deploying SUSE OpenStack Cloud, and you cannot change them afterward.

2.1 Network

SUSE OpenStack Cloud requires a complex network setup consisting of several networks that are configured during installation. These networks are for exclusive cloud usage. You need a router to access them from an existing network.

The network configuration on the nodes in the SUSE OpenStack Cloud network is entirely controlled by Crowbar. Any network configuration not created with Crowbar (for example, with YaST) will automatically be overwritten. After the cloud is deployed, network settings cannot be changed.
The following networks are pre-defined when setting up SUSE OpenStack Cloud. The IP addresses listed are the default addresses and can be changed using the YaST Crowbar module (see Chapter 7, Crowbar Setup). It is also possible to customize the network setup by manually editing the network barclamp template. See Section 7.5, “Custom Network Configuration” for detailed instructions.
Admin Network (192.168.124/24)
A private network to access the Administration Server and all nodes for administration purposes. The default setup also allows access to the BMC (Baseboard Management Controller) data via IPMI (Intelligent Platform Management Interface) from this network. If required, BMC access can be swapped to a separate network.
You have the following options for controlling access to this network:

- Do not allow access from the outside and keep the admin network completely separated.
- Allow access to the Administration Server from a single network (for example, your company's administration network) via the “bastion network” option configured on an additional network card with a fixed IP address.
- Allow access from one or more networks via a gateway.

Storage Network (192.168.125/24)
Private SUSE OpenStack Cloud internal virtual network. This network is used by Ceph and Swift only. It should not be accessed by users.

Private Network (nova-fixed, 192.168.123/24)
Private SUSE OpenStack Cloud internal virtual network. This network is used for inter-instance communication and provides access to the outside world for the instances. The required gateway is automatically provided by SUSE OpenStack Cloud.

Public Network (nova-floating, public, 192.168.126/24)
The only public network provided by SUSE OpenStack Cloud. You can access the Nova Dashboard and all instances (provided they have been equipped with floating IP addresses) on this network. This network can only be accessed via a gateway, which must be provided externally. All SUSE OpenStack Cloud users and administrators must have access to the public network.

Software Defined Network (os_sdn, 192.168.130/24)
Private SUSE OpenStack Cloud internal virtual network. This network is used when Neutron is configured to use openvswitch with GRE tunneling for the virtual networks. It should not be accessible to users.

The Monasca Monitoring Network
The Monasca monitoring node needs to have an interface on both the admin network and the public network. Monasca's backend services will listen on the admin network, the API services (openstack-monasca-api, openstack-monasca-log-api) will listen on all
interfaces. openstack-monasca-agent and openstack-monasca-log-agent will send their logs and metrics to the monasca-api/monasca-log-api services to the monitoring node's public network IP address.

⚠️ Warning: Protect Networks from External Access

For security reasons, protect the following networks from external access:

- **Admin Network** (192.168.124/24)
- **Storage Network** (192.168.125/24)
- **Software Defined Network** (os_sdn, 192.168.130/24)

Especially traffic from the cloud instances must not be able to pass through these networks.

❗ Important: VLAN Settings

As of SUSE OpenStack Cloud 7, using a VLAN for the admin network is only supported on a native/untagged VLAN. If you need VLAN support for the admin network, it must be handled at switch level.

When changing the network configuration with YaST or by editing /etc/crowbar/network.json you can define VLAN settings for each network. For the networks nova-fixed and nova-floating, however, special rules apply:

**nova-fixed**: The USE VLAN setting will be ignored. However, VLANs will automatically be used if deploying Neutron with VLAN support (using the plugins linuxbridge, openvswitch plus VLAN, or cisco plus VLAN). In this case, you need to specify a correct VLAN ID for this network.

**nova-floating**: When using a VLAN for nova-floating (which is the default), the USE VLAN and VLAN ID settings for nova-floating and public must be the same. When not using a VLAN for nova-floating, it must have a different physical network interface than the nova_fixed network.
Note: No IPv6 Support

As of SUSE OpenStack Cloud 7, IPv6 is not supported. This applies to the cloud internal networks and to the instances.

The following diagram shows the pre-defined SUSE OpenStack Cloud network in more detail. It demonstrates how the OpenStack nodes and services use the different networks.

FIGURE 2.2: SUSE OPENSTACK CLOUD NETWORK: DETAILS

2.1.1 Network Address Allocation

The default networks set up in SUSE OpenStack Cloud are class C networks with 256 IP addresses each. This limits the maximum number of instances that can be started simultaneously. Addresses within the networks are allocated as outlined in the following table. Use the YaST Crowbar module to make customizations (see Chapter 7, Crowbar Setup). The last address in the IP address range of each network is always reserved as the broadcast address. This assignment cannot be changed.

For an overview of the minimum number of IP addresses needed for each of the ranges in the network settings, see Table 2.1, “Minimum Number of IP Addresses for Network Ranges”.
TABLE 2.1: MINIMUM NUMBER OF IP ADDRESSES FOR NETWORK RANGES

<table>
<thead>
<tr>
<th>Network</th>
<th>Required Number of IP addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Network</td>
<td>• 1 IP address per node (Administration Server, Control Nodes, and Compute Nodes)</td>
</tr>
<tr>
<td></td>
<td>• 1 VIP address for PostgreSQL</td>
</tr>
<tr>
<td></td>
<td>• 1 VIP address for RabbitMQ</td>
</tr>
<tr>
<td></td>
<td>• 1 VIP address per cluster (per Pacemaker barclap proposal)</td>
</tr>
<tr>
<td>Public Network</td>
<td>• 1 IP address per node (Control Nodes and Compute Nodes)</td>
</tr>
<tr>
<td></td>
<td>• 1 VIP address per cluster</td>
</tr>
<tr>
<td>BMC Network</td>
<td>• 1 IP address per node (Administration Server, Control Nodes, and Compute Nodes)</td>
</tr>
<tr>
<td>Software Defined Network</td>
<td>• 1 IP address per node (Control Nodes and Compute Nodes)</td>
</tr>
</tbody>
</table>

Note: Limitations of the Default Network Proposal

The default network proposal as described below limits the maximum number of Compute Nodes to 80, the maximum number of floating IP addresses to 61 and the maximum number of addresses in the nova_fixed network to 204.

To overcome these limitations you need to reconfigure the network setup by using appropriate address ranges. Do this by either using the YaST Crowbar module as described in Chapter 7, Crowbar Setup, or by manually editing the network template file as described in Section 7.5, “Custom Network Configuration”.

TABLE 2.2: 192.168.124.0/24 (ADMIN/BMC) NETWORK ADDRESS ALLOCATION

<table>
<thead>
<tr>
<th>Function</th>
<th>Address</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>router</td>
<td>192.168.124.1</td>
<td>Provided externally.</td>
</tr>
<tr>
<td>admin</td>
<td>192.168.124.10-192.168.124.11</td>
<td>Fixed addresses reserved for the Administration Server.</td>
</tr>
<tr>
<td>Function</td>
<td>Address</td>
<td>Remark</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>DHCP</td>
<td>192.168.124.21 - 192.168.124.80</td>
<td>Address range reserved for node allocation/installation. Determines the maximum number of parallel allocations/installations.</td>
</tr>
<tr>
<td>host</td>
<td>192.168.124.81 - 192.168.124.160</td>
<td>Fixed addresses for the OpenStack nodes. Determines the maximum number of OpenStack nodes that can be deployed.</td>
</tr>
<tr>
<td>bmc_vlan_host</td>
<td>192.168.124.161</td>
<td>Fixed address for the BMC VLAN. Used to generate a VLAN tagged interface on the Administration Server that can access the BMC network. The BMC VLAN must be in the same ranges as BMC, and BMC must have VLAN enabled.</td>
</tr>
<tr>
<td>bmc_host</td>
<td>192.168.124.162 - 192.168.124.240</td>
<td>Fixed addresses for the OpenStack nodes. Determines the maximum number of OpenStack nodes that can be deployed.</td>
</tr>
<tr>
<td>switch</td>
<td>192.168.124.241 - 192.168.124.250</td>
<td>This range is not used in current releases and might be removed in the future.</td>
</tr>
</tbody>
</table>

**TABLE 2.3: 192.168.125/24 (STORAGE) NETWORK ADDRESS ALLOCATION**

<table>
<thead>
<tr>
<th>Function</th>
<th>Address</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>host</td>
<td>192.168.125.10 - 192.168.125.239</td>
<td>Each Storage Node will get an address from this range.</td>
</tr>
</tbody>
</table>

**TABLE 2.4: 192.168.123/24 (PRIVATE NETWORK/NOVA-FIXED) NETWORK ADDRESS ALLOCATION**

<table>
<thead>
<tr>
<th>Function</th>
<th>Address</th>
<th>Remark</th>
</tr>
</thead>
</table>
### TABLE 2.5: 192.168.126/24 (PUBLIC NETWORK NOVA-FLOATING, PUBLIC) NETWORK ADDRESS ALLOCATION

<table>
<thead>
<tr>
<th>Function</th>
<th>Address</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>router</td>
<td>192.168.126.1</td>
<td>Provided externally.</td>
</tr>
<tr>
<td>public host</td>
<td>192.168.126.2 - 192.168.126.127</td>
<td>Public address range for external SUSE OpenStack Cloud components such as the OpenStack Dashboard or the API.</td>
</tr>
<tr>
<td>floating host</td>
<td>192.168.126.129 - 192.168.126.254</td>
<td>Floating IP address range. Floating IP addresses can be manually assigned to a running instance to allow to access the guest from the outside. Determines the maximum number of instances that can concurrently be accessed from the outside. The nova_floating network is set up with a netmask of 255.255.255.192, allowing a maximum number of 61 IP addresses. This range is pre-allocated by default and managed by Neutron.</td>
</tr>
</tbody>
</table>

### TABLE 2.6: 192.168.130/24 (SOFTWARE DEFINED NETWORK) NETWORK ADDRESS ALLOCATION

<table>
<thead>
<tr>
<th>Function</th>
<th>Address</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>host</td>
<td>192.168.130.10 - 192.168.130.254</td>
<td>If Neutron is configured with openvswitch and gre, each network node and all Compute Nodes will get an IP address from this range.</td>
</tr>
</tbody>
</table>

**Note: Addresses for Additional Servers**

Addresses not used in the ranges mentioned above can be used to add additional servers with static addresses to SUSE OpenStack Cloud. Such servers can be used to provide additional services. A SUSE Manager server inside SUSE OpenStack Cloud, for example, must be configured using one of these addresses.
2.1.2 Network Modes

SUSE OpenStack Cloud supports different network modes defined in Crowbar: **single**, **dual**, and **team**. As of SUSE OpenStack Cloud 7, the networking mode is applied to all nodes and the Administration Server. That means that all machines need to meet the hardware requirements for the chosen mode. The network mode can be configured using the YaST Crowbar module (*Chapter 7, Crowbar Setup*). The network mode cannot be changed after the cloud is deployed.

Other, more flexible network mode setups can be configured by manually editing the Crowbar network configuration files. See *Section 7.5, “Custom Network Configuration”* for more information. SUSE or a partner can assist you in creating a custom setup within the scope of a consulting services agreement (see [http://www.suse.com/consulting/](http://www.suse.com/consulting/) for more information on SUSE consulting).

⚠️ **Important: Network Device Bonding is Required for HA**

Network device bonding is required for an HA setup of SUSE OpenStack Cloud. If you are planning to move your cloud to an HA setup at a later point in time, make sure to use a network mode in the YaST Crowbar that supports network device bonding. Otherwise a migration to an HA setup is not supported.
2.1.2.1 Single Network Mode

In single mode you use one Ethernet card for all the traffic:
2.1.2.2  Dual Network Mode

Dual mode needs two Ethernet cards (on all nodes but Administration Server) to completely separate traffic between the Admin Network and the public network:

2.1.2.3  Team Network Mode

Team mode is similar to single mode, except that you combine several Ethernet cards to a “bond” (network device bonding). Team mode needs two or more Ethernet cards.
When using team mode, you must choose a “bonding policy” that defines how to use the combined Ethernet cards. You can either set them up for fault tolerance, performance (load balancing), or a combination of both.
2.1.3 Accessing the Administration Server via a Bastion Network

Enabling access to the Administration Server from another network requires an external gateway. This option offers maximum flexibility, but requires additional hardware and may be less secure than you require. Therefore SUSE OpenStack Cloud offers a second option for accessing the Administration Server: the bastion network. You only need a dedicated Ethernet card and a static IP address from the external network to set it up.

The bastion network setup (see Section 7.3.1, “Setting Up a Bastion Network” for setup instructions) enables logging in to the Administration Server via SSH from the company network. A direct login to other nodes in the cloud is not possible. However, the Administration Server can act as a “jump host”: First log in to the Administration Server via SSH, then log in via SSH to other nodes.

2.1.4 DNS and Host Names

The Administration Server acts as a name server for all nodes in the cloud. If the Administration Server has access to the outside, then you can add additional name servers that are automatically used to forward requests. If additional name servers are found on your cloud deployment, the name server on the Administration Server is automatically configured to forward requests for non-local records to these servers.

The Administration Server must have a fully qualified host name. The domain name you specify is used for the DNS zone. It is required to use a sub-domain such as cloud.example.com. The Administration Server must have authority over the domain it is on so that it can create records for discovered nodes. As a result, it will not forward requests for names it cannot resolve in this domain, and thus cannot resolve names for the second-level domain, e.g. example.com, other than for nodes in the cloud.

This host name must not be changed after SUSE OpenStack Cloud has been deployed. The OpenStack nodes are named after their MAC address by default, but you can provide aliases, which are easier to remember when allocating the nodes. The aliases for the OpenStack nodes can be changed at any time. It is useful to have a list of MAC addresses and the intended use of the corresponding host at hand when deploying the OpenStack nodes.
2.2 Persistent Storage

When talking about “persistent storage” on SUSE OpenStack Cloud, there are two completely different aspects to discuss: 1) the block and object storage services SUSE OpenStack Cloud offers, 2) the hardware related storage aspects on the different node types.

Note: Persistent vs. Ephemeral Storage

Block and object storage are persistent storage models where files or images are stored until they are explicitly deleted. SUSE OpenStack Cloud also offers ephemeral storage for images attached to instances. These ephemeral images only exist during the life of an instance and are deleted when the guest is terminated. See Section 2.2.3, “Compute Nodes” for more information.

2.2.1 Cloud Storage Services

SUSE OpenStack Cloud offers two different types of services for persistent storage: object and block storage. Object storage lets you upload and download files (similar to an FTP server), whereas a block storage provides mountable devices (similar to a hard disk partition). SUSE OpenStack Cloud provides a repository to store the virtual disk images used to start instances.

Object Storage with Swift

The OpenStack object storage service is called Swift. The storage component of Swift (swiftstorage) must be deployed on dedicated nodes where no other cloud services run. Deploy at least two Swift nodes to provide redundant storage. SUSE OpenStack Cloud is configured to always use all unused disks on a node for storage.

Swift can optionally be used by Glance, the service that manages the images used to boot the instances. Offering object storage with Swift is optional.

Block Storage

Block storage on SUSE OpenStack Cloud is provided by Cinder. Cinder can use a variety of storage back-ends, including network storage solutions like NetApp or EMC. It is also possible to use local disks for block storage. A list of drivers available for Cinder and the features supported for each driver is available from the CinderSupportMatrix at https://wiki.openstack.org/wiki/CinderSupportMatrix. SUSE OpenStack Cloud 7 ships with OpenStack Newton.
Alternatively, Cinder can use Ceph RBD as a back-end. Ceph offers data security and speed by storing the devices redundantly on different servers. Ceph needs to be deployed on dedicated nodes where no other cloud services run, and requires at least four dedicated nodes. If you deploy the optional Calamari server for Ceph management and monitoring, you need an additional dedicated node.

**The Glance Image Repository**

Glance provides a catalog and repository for virtual disk images used to start the instances. Glance is installed on a Control Node. It uses Swift, Ceph, or a directory on the Control Node to store the images. The image directory can either be a local directory or an NFS share.

### 2.2.2 Storage Hardware Requirements

Each node in SUSE OpenStack Cloud needs sufficient disk space to store both the operating system and additional data. Requirements and recommendations for the various node types are listed below.

**Important: Choose a Hard Disk for the Operating System Installation**

The operating system will always be installed on the *first* hard disk. This is the disk that is listed *first* in the BIOS, the one from which the machine will boot. Make sure that the hard disk the operating system is installed on will be recognized as the first disk.

#### 2.2.2.1 Administration Server

If you store the update repositories directly on the Administration Server (see Section 2.5.2, “Product and Update Repositories”), we recommend mounting `/srv` on a separate partition or volume with a minimum of 30 GB space.

Log files from all nodes in SUSE OpenStack Cloud are stored on the Administration Server under `/var/log` (see Section 16.1, “On the Administration Server” for a complete list). The message service RabbitMQ requires 1 GB of free space in `/var`.
2.2.2.2 Control Nodes

Depending on how the services are set up, Glance and Cinder may require additional disk space on the Control Node on which they are running. Glance may be configured to use a local directory, whereas Cinder may use a local image file for storage. For performance and scalability reasons this is only recommended for test setups. Make sure there is sufficient free disk space available if you use a local file for storage.

Cinder may be configured to use local disks for storage (configuration option `raw`). If you choose this setup, we recommend deploying the `cinder-volume` role to one or more dedicated Control Nodes. Those should be equipped with several disks providing sufficient storage space. It may also be necessary to equip this node with two or more bonded network cards, since it will generate heavy network traffic. Bonded network cards require a special setup for this node. For details, refer to Section 7.5, “Custom Network Configuration”.

Live migration for Xen instances requires exporting `/var/lib/nova/instances` on the Control Node hosting `nova-controller`. This directory will host a copy of the root disk of all Xen instances in the cloud and needs to have sufficient disk space. We strongly recommended using a separate block device for this directory, preferably a RAID device to ensure data security.

2.2.2.3 Compute Nodes

Unless an instance is started via “Boot from Volume”, it is started with at least one disk, which is a copy of the image from which it has been started. Depending on the flavor you start, the instance may also have a second, so-called “ephemeral” disk. The size of the root disk depends on the image itself. Ephemeral disks are always created as sparse image files that grow up to a defined size as they are “filled”. By default ephemeral disks have a size of 10 GB.

Both disks, root images and ephemeral disk, are directly bound to the instance and are deleted when the instance is terminated. These disks are bound to the Compute Node on which the instance has been started. The disks are created under `/var/lib/nova` on the Compute Node. Your Compute Nodes should be equipped with enough disk space to store the root images and ephemeral disks.
Note: Ephemeral Disks vs. Block Storage

Do not confuse ephemeral disks with persistent block storage. In addition to an ephemeral disk, which is automatically provided with most instance flavors, you can optionally add a persistent storage device provided by Cinder. Ephemeral disks are deleted when the instance terminates, while persistent storage devices can be reused in another instance.

The maximum disk space required on a compute node depends on the available flavors. A flavor specifies the number of CPUs, RAM, and disk size of an instance. Several flavors ranging from tiny (1 CPU, 512 MB RAM, no ephemeral disk) to xlarge (8 CPUs, 8 GB RAM, 10 GB ephemeral disk) are available by default. Adding custom flavors, and editing and deleting existing flavors is also supported.

To calculate the minimum disk space needed on a compute node, you need to determine the highest disk-space-to-RAM ratio from your flavors. For example:

Flavor small: 2 GB RAM, 100 GB ephemeral disk = \( \frac{50}{1} \) GB disk /1 GB RAM
Flavor large: 8 GB RAM, 200 GB ephemeral disk = \( \frac{25}{1} \) GB disk /1 GB RAM

So, 50 GB disk /1 GB RAM is the ratio that matters. If you multiply that value by the amount of RAM in GB available on your compute node, you have the minimum disk space required by ephemeral disks. Pad that value with sufficient space for the root disks plus a buffer to leave room for flavors with a higher disk-space-to-RAM ratio in the future.

Warning: Overcommitting Disk Space

The scheduler that decides in which node an instance is started does not check for available disk space. If there is no disk space left on a compute node, this will not only cause data loss on the instances, but the compute node itself will also stop operating. Therefore you must make sure all compute nodes are equipped with enough hard disk space.

2.2.2.4 Storage Nodes (optional)

The block storage service Ceph RBD and the object storage service Swift need to be deployed onto dedicated nodes—it is not possible to mix these services. The Swift component requires at least two machines (more are recommended) to store data redundantly. Ceph requires at least
four machines (more are recommended). If you are deploying the optional Calamari server for Ceph management and monitoring, you need an additional machine with moderate CPU and RAM requirements.

Each Ceph/Swift Storage Node needs at least two hard disks. The first one will be used for the operating system installation, while the others can be used for storage. We recommend equipping the storage nodes with as many disks as possible.

Using RAID on Swift storage nodes is not supported. Swift takes care of redundancy and replication on its own. Using RAID with Swift would also result in a huge performance penalty.

2.3 SSL Encryption

Whenever non-public data travels over a network it must be encrypted. Encryption protects the integrity and confidentiality of data. Therefore you should enable SSL support when deploying SUSE OpenStack Cloud to production. (SSL is not enabled by default as it requires you to provide certificates.) The following services (and their APIs, if available) can use SSL:

- Cinder
- Horizon
- Glance
- Heat
- Keystone
- Manila
- Neutron
- Nova
- Trove
- Aodh
- Swift
- VNC
- RabbitMQ
You have two options for deploying your SSL certificates. You may use a single shared certificate for all services on each node, or provide individual certificates for each service. The minimum requirement is a single certificate for the Control Node and all services installed on it.

Certificates must be signed by a trusted authority. Refer to http://www.suse.com/documentation/sles-12/book_sle_admin/data/sec_apache2_ssl.html for instructions on how to create and sign them.

⚠️ Important: Host Names

Each SSL certificate is issued for a certain host name and, optionally, for alternative host names (via the AlternativeName option). Each publicly available node in SUSE OpenStack Cloud has two host names—an internal and a public one. The SSL certificate needs to be issued for both internal and public names.

The internal name has the following scheme:

```
dMAC ADDRESS.FQDN
```

`MAC ADDRESS` is the MAC address of the interface used to boot the machine via PXE. All letters are turned lowercase and all colons are replaced with dashes. For example, `52-54-00-8e-ce-e3`. `FQDN` is the fully qualified domain name. An example name looks like this:

```
d52-54-00-8e-ce-e3.example.com
```

Unless you have entered a custom Public Name for a client (see Section 10.2, “Node Installation” for details), the public name is the same as the internal name prefixed by public:

```
public.d52-54-00-8e-ce-e3.example.com
```

To look up the node names open the Crowbar Web interface and click the name of a node in the Node Dashboard. The names are listed as Full Name and Public Name.
2.4 Hardware Requirements

Precise hardware requirements can only be listed for the Administration Server and the OpenStack Control Node. The requirements of the OpenStack Compute and Storage Nodes depend on the number of concurrent instances and their virtual hardware equipment.

A minimum of three machines are required for a SUSE OpenStack Cloud: one Administration Server, one Control Node, and one Compute Node. You also need a gateway providing access to the public network. Deploying storage requires additional nodes: at least two nodes for Swift and a minimum of four nodes for Ceph.

Important: Virtual/Physical Machines and Architecture

Deploying SUSE OpenStack Cloud functions to virtual machines is only supported for the Administration Server—all other nodes need to be physical hardware. Although the Control Node can be virtualized in test environments, this is not supported for production systems.

SUSE OpenStack Cloud currently only runs on x86_64 hardware.

2.4.1 Administration Server

- Architecture: x86_64.

- RAM: at least 4 GB, 8 GB recommended. The demand for memory depends on the total number of nodes in SUSE OpenStack Cloud—the higher the number of nodes, the more RAM is needed. A deployment with 50 nodes requires a minimum of 24 GB RAM for each Control Node.

- Hard disk: at least 50 GB. We recommend putting /srv on a separate partition with at least additional 30 GB of space. Alternatively, you can mount the update repositories from another server (see Section 2.5.2, “Product and Update Repositories” for details).

- Number of network cards: 1 for single and dual mode, 2 or more for team mode. Additional networks such as the bastion network and/or a separate BMC network each need an additional network card. See Section 2.1, “Network” for details.

- Can be deployed on physical hardware or a virtual machine.
2.4.2 Control Node

- **Architecture**: x86_64.

- **RAM**: at least 8 GB, 12 GB when deploying a single Control Node, and 32 GB recommended.

- **Number of network cards**: 1 for single mode, 2 for dual mode, 2 or more for team mode. See Section 2.1, “Network” for details.

- **Hard disk**: See Section 2.2.2.2, “Control Nodes”.

2.4.3 Compute Node

The Compute Nodes need to be equipped with a sufficient amount of RAM and CPUs, matching the numbers required by the maximum number of instances running concurrently. An instance started in SUSE OpenStack Cloud cannot share resources from several physical nodes. It uses the resources of the node on which it was started. So if you offer a flavor (see Flavor for a definition) with 8 CPUs and 12 GB RAM, at least one of your nodes should be able to provide these resources. Add 1 GB RAM for every two nodes (including Control Nodes and Storage Nodes) deployed in your cloud. See Section 2.2.2.3, “Compute Nodes” for storage requirements.

2.4.4 Storage Node

Usually a single CPU and a minimum of 4 GB RAM are sufficient for the Storage Nodes. Memory requirements increase depending on the total number of nodes in SUSE OpenStack Cloud—the higher the number of nodes, the more RAM you need. A deployment with 50 nodes requires a minimum of 20 GB for each Storage Node. If you use Ceph as storage, the storage nodes should be equipped with an additional 2 GB RAM per OSD (Ceph object storage daemon). For storage requirements, see Section 2.2.2.4, “Storage Nodes (optional)”. 
2.5 Software Requirements

All nodes and the Administration Server in SUSE OpenStack Cloud run on SUSE Linux Enterprise Server 12 SP2. Subscriptions for the following components are available as one- or three-year subscriptions including priority support:

- SUSE OpenStack Cloud Control Node + SUSE OpenStack Cloud Administration Server (including entitlements for High Availability and SUSE Linux Enterprise Server 12 SP2)
- Additional SUSE OpenStack Cloud Control Node (including entitlements for High Availability and SUSE Linux Enterprise Server 12 SP2)
- SUSE OpenStack Cloud Compute Node (excluding entitlements for High Availability and SUSE Linux Enterprise Server 12 SP2)
- SUSE OpenStack Cloud Swift node (excluding entitlements for High Availability and SUSE Linux Enterprise Server 12 SP2)

SUSE Linux Enterprise Server 12 SP2, HA entitlements for Compute Nodes and Swift Storage Nodes, and entitlements for guest operating systems need to be purchased separately. Refer to [http://www.suse.com/products/suse-openstack-cloud/how-to-buy/](http://www.suse.com/products/suse-openstack-cloud/how-to-buy/) for more information on licensing and pricing.


⚠️ Important: SUSE Account

A SUSE account is needed for product registration and access to update repositories. If you do not already have one, go to [http://www.suse.com/login](http://www.suse.com/login) to create it.

2.5.1 Optional Component: SUSE Enterprise Storage

SUSE OpenStack Cloud can be extended by SUSE Enterprise Storage for setting up a Ceph cluster providing block storage services. To store virtual disks for instances, SUSE OpenStack Cloud uses block storage provided by the Cinder module. Cinder itself needs a back-end providing
storage. In production environments this usually is a network storage solution. Cinder can use a variety of network storage back-ends, among them solutions from EMC, Fujitsu, or NetApp. In case your organization does not provide a network storage solution that can be used with SUSE OpenStack Cloud, you can set up a Ceph cluster with SUSE Enterprise Storage. SUSE Enterprise Storage provides a reliable and fast distributed storage architecture using commodity hardware platforms.

Deploying SUSE Enterprise Storage (Ceph) within SUSE OpenStack Cloud is fully supported. Ceph nodes can be deployed using the same interface as for all other SUSE OpenStack Cloud components. It requires a SUSE Enterprise Storage subscription. See https://www.suse.com/products/suse-enterprise-storage/ for more information on SUSE Enterprise Storage.

2.5.2 Product and Update Repositories

You need seven software repositories to deploy SUSE OpenStack Cloud and to keep a running SUSE OpenStack Cloud up-to-date. This includes the static product repositories, which do not change over the product life cycle, and the update repositories, which constantly change. The following repositories are needed:

**MANDATORY REPOSITORIES**

**SUSE Linux Enterprise Server 12 SP2 Product**

The SUSE Linux Enterprise Server 12 SP2 product repository is a copy of the installation media (DVD #1) for SUSE Linux Enterprise Server. As of SUSE OpenStack Cloud 7 it is required to have it available locally on the Administration Server. This repository requires approximately 3.5 GB of hard disk space.

**SUSE OpenStack Cloud 7 Product**

The SUSE OpenStack Cloud 7 product repository is a copy of the installation media (DVD #1) for SUSE OpenStack Cloud. It can either be made available remotely via HTTP, or locally on the Administration Server. We recommend the latter since it makes the setup of the Administration Server easier. This repository requires approximately 500 MB of hard disk space.

**PTF**

This repository is created automatically on the Administration Server when you install the SUSE OpenStack Cloud add-on product. It serves as a repository for “Program Temporary Fixes” (PTF), which are part of the SUSE support program.
SLES12-SP2-Pool and SUSE-OpenStack-Cloud-7-Pool

The SUSE Linux Enterprise Server and SUSE OpenStack Cloud repositories contain all binary RPMs from the installation media, plus pattern information and support status metadata. These repositories are served from SUSE Customer Center and need to be kept in synchronization with their sources. Make them available remotely via an existing SMT or SUSE Manager server. Alternatively, make them available locally on the Administration Server by installing a local SMT server, by mounting or synchronizing a remote directory, or by copying them.

SLES12-SP2-Updates and SUSE-OpenStack-Cloud-7-Updates

These repositories contain maintenance updates to packages in the corresponding Pool repositories. These repositories are served from SUSE Customer Center and need to be kept synchronized with their sources. Make them available remotely via an existing SMT or SUSE Manager server, or locally on the Administration Server by installing a local SMT server, by mounting or synchronizing a remote directory, or by regularly copying them.

As explained in Section 2.6, “High Availability”, Control Nodes in SUSE OpenStack Cloud can optionally be made highly available with the SUSE Linux Enterprise High Availability Extension. SUSE OpenStack Cloud also comes with full support for installing a Ceph storage cluster, which is provided by the SUSE Enterprise Storage extension. (Deploying Ceph is optional.) The following repositories are required to deploy SLES High Availability Extension and SUSE Enterprise Storage nodes:

OPTIONAL REPOSITORIES

SLE-HA12-SP2-Pool and SUSE-Enterprise-Storage-4-Pool

The pool repositories contain all binary RPMs from the installation media, plus pattern information and support status metadata. These repositories are served from SUSE Customer Center and need to be kept in synchronization with their sources. Make them available remotely via an existing SMT or SUSE Manager server. Alternatively, make them available locally on the Administration Server by installing a local SMT server, by mounting or synchronizing a remote directory, or by copying them.

SLE-HA12-SP2-Updates and SUSE-Enterprise-Storage-4-Updates

These repositories contain maintenance updates to packages in the corresponding pool repositories. These repositories are served from SUSE Customer Center and need to be kept synchronized with their sources. Make them available remotely via an existing SMT or SUSE Manager server, or locally on the Administration Server by installing a local SMT server, by mounting or synchronizing a remote directory, or by regularly copying them.
The product repositories for SUSE Linux Enterprise Server 12 SP2 and SUSE OpenStack Cloud 7 do not change during the life cycle of a product. Thus, they can be copied to the destination directory from the installation media. However, the pool and update repositories must be kept synchronized with their sources on the SUSE Customer Center. SUSE offers two products that synchronize repositories and make them available within your organization: SUSE Manager (http://www.suse.com/products/suse-manager/, and Subscription Management Tool (which ships with SUSE Linux Enterprise Server 12 SP2).

All repositories must be served via http to be available for SUSE OpenStack Cloud deployment. Repositories that are installed on the Administration Server are made available by the Apache Web server running on the Administration Server. If your organization already uses SUSE Manager or SMT, you can use the repositories provided by these servers.

Making the repositories locally available on the Administration Server has the advantage of a simple network setup within SUSE OpenStack Cloud, and it allows you to seal off the SUSE OpenStack Cloud network from other networks in your organization. Hosting the repositories on a remote server has the advantage of using existing resources and services, and it makes setting up the Administration Server much easier. However, this requires a custom network setup for SUSE OpenStack Cloud, since the Administration Server needs access to the remote server.

Installing a Subscription Management Tool (SMT) Server on the Administration Server

The SMT server, shipping with SUSE Linux Enterprise Server 12 SP2, regularly synchronizes repository data from SUSE Customer Center with your local host. Installing the SMT server on the Administration Server is recommended if you do not have access to update repositories from elsewhere within your organization. This option requires the Administration Server to have Internet access.

Using a Remote SMT Server

If you already run an SMT server within your organization, you can use it within SUSE OpenStack Cloud. When using a remote SMT server, update repositories are served directly from the SMT server. Each node is configured with these repositories upon its initial setup. The SMT server needs to be accessible from the Administration Server and all nodes in SUSE OpenStack Cloud (via one or more gateways). Resolving the server's host name also needs to work.
Using a SUSE Manager Server

Each client that is managed by SUSE Manager needs to register with the SUSE Manager server. Therefore the SUSE Manager support can only be installed after the nodes have been deployed. SUSE Linux Enterprise Server 12 SP2 must be set up for autoinstallation on the SUSE Manager server in order to use repositories provided by SUSE Manager during node deployment.

The server needs to be accessible from the Administration Server and all nodes in SUSE OpenStack Cloud (via one or more gateways). Resolving the server's host name also needs to work.

Using Existing Repositories

If you can access existing repositories from within your company network from the Administration Server, you have the following options: mount, synchronize, or manually transfer these repositories to the required locations on the Administration Server.

2.6 High Availability

Several components and services in SUSE OpenStack Cloud are potentially single points of failure that may cause system downtime and data loss if they fail.

SUSE OpenStack Cloud provides various mechanisms to ensure that the crucial components and services are highly available. The following sections provide an overview of components on each node that can be made highly available. For making the Control Node functions and the Compute Nodes highly available, SUSE OpenStack Cloud uses the cluster software SUSE Linux Enterprise High Availability Extension. Make sure to thoroughly read Section 2.6.5, “Cluster Requirements and Recommendations” to learn about additional requirements for high availability deployments.

2.6.1 High Availability of the Administration Server

The Administration Server provides all services needed to manage and deploy all other nodes in the cloud. If the Administration Server is not available, new cloud nodes cannot be allocated, and you cannot add new roles to cloud nodes.

However, only two services on the Administration Server are single points of failure, without which the cloud cannot continue to run properly: DNS and NTP.
2.6.1.1 Administration Server—Avoiding Points of Failure

To avoid DNS and NTP as potential points of failure, deploy the roles `dns-server` and `ntp-server` to multiple nodes.

⚠️ Note: Access to External Network

If any configured DNS forwarder or NTP external server is not reachable through the admin network from these nodes, allocate an address in the public network for each node that has the `dns-server` and `ntp-server` roles:

```
crowbar network allocate_ip default `hostname -f` public host
```

Then the nodes can use the public gateway to reach the external servers. The change will only become effective after the next run of `chef-client` on the affected nodes.

2.6.1.2 Administration Server—Recovery

To minimize recovery time for the Administration Server, follow the backup and restore recommendations described in Section 15.7, “Backing Up and Restoring the Administration Server”.

2.6.2 High Availability of the Control Node(s)

The Control Node(s) usually run a variety of services without which the cloud would not be able to run properly.

2.6.2.1 Control Node(s)—Avoiding Points of Failure

To prevent the cloud from avoidable downtime if one or more Control Nodes fail, you can make the following roles highly available:

- `database-server` (database barclamp)
- `keystone-server` (keystone barclamp)
- `rabbitmq-server` (rabbitmq barclamp)
- `swift-proxy` (swift barclamp)
- `glance-server` (glance barclamp)
- `cinder-controller` (**cinder** barclamp)
- `neutron-server` (**neutron** barclamp)
- `neutron-network` (**neutron** barclamp)
- `nova-controller` (**nova** barclamp)
- `nova_dashboard-server` (**nova_dashboard** barclamp)
- `ceilometer-server` (**ceilometer** barclamp)
- `ceilometer-polling` (**ceilometer** barclamp)
- `heat-server` (**heat** barclamp)

Instead of assigning these roles to individual cloud nodes, you can assign them to one or several High Availability clusters. SUSE OpenStack Cloud will then use the Pacemaker cluster stack (shipped with the SUSE Linux Enterprise High Availability Extension) to manage the services. If one Control Node fails, the services will fail over to another Control Node. For details on the Pacemaker cluster stack and the SUSE Linux Enterprise High Availability Extension, refer to the Administration Guide, available at http://www.suse.com/documentation/sle-ha-12/. Note that SUSE Linux Enterprise High Availability Extension includes Linux Virtual Server as the load-balancer, and SUSE OpenStack Cloud uses HAProxy for this purpose (http://haproxy.1wt.eu/).

**Note: Recommended Setup**

Though it is possible to use the same cluster for all of the roles above, the recommended setup is to use three clusters and to deploy the roles as follows:

- **data cluster**: `database-server` and `rabbitmq-server`
- **network cluster**: `neutron-network` (as the `neutron-network` role may result in heavy network load and CPU impact)
- Trove (always needs to be deployed on a dedicated node)
- **services** cluster: all other roles listed above (as they are related to API/schedulers)

SUSE OpenStack Cloud does not support High Availability for the LBaaS service plugin. Thus, failover of a neutron load-balancer to another node can only be configured manually by editing the database.
## Important: Cluster Requirements and Recommendations

For setting up the clusters, some special requirements and recommendations apply. For details, refer to Section 2.6.5, “Cluster Requirements and Recommendations”.

### 2.6.2.2 Control Node(s)—Recovery

Recovery of the Control Node(s) is done automatically by the cluster software: if one Control Node fails, Pacemaker will fail over the services to another Control Node. If a failed Control Node is repaired and rebuilt via Crowbar, it will be automatically configured to join the cluster. At this point Pacemaker will have the option to fail back services if required.

### 2.6.3 High Availability of the Compute Node(s)

If a Compute Node fails, all VMs running on that node will go down. While it cannot protect against failures of individual VMs, a High Availability setup for Compute Nodes helps to minimize VM downtime caused by Compute Node failures. If the `nova-compute` service or `libvirtd` fail on a Compute Node, Pacemaker will try to automatically recover them. If recovery fails, or the node itself should become unreachable, the node will be fenced and the VMs will be moved to a different Compute Node.

If you decide to use High Availability for Compute Nodes, your Compute Node will be run as Pacemaker remote nodes. With the `pacemaker-remote` service, High Availability clusters can be extended to control remote nodes without any impact on scalability, and without having to install the full cluster stack (including `corosync`) on the remote nodes. Instead, each Compute Node only runs the `pacemaker-remote` service. The service acts as a proxy, allowing the cluster stack on the “normal” cluster nodes to connect to it and to control services remotely. Thus, the node is effectively integrated into the cluster as a remote node. In this way, the services running on the OpenStack compute nodes can be controlled from the core Pacemaker cluster in a lightweight, scalable fashion.

To configure High Availability for Compute Nodes, you need to adjust the following barclamp proposals:

- Pacemaker—for details, see Section 11.1, “Deploying Pacemaker (Optional, HA Setup Only)”.
- Nova—for details, see Section 11.10.1, “HA Setup for Nova”.

### 2.6.4 High Availability of the Storage Node(s)

SUSE OpenStack Cloud offers two different types of storage that can be used for the Storage Nodes: object storage (provided by the OpenStack Swift component) and block storage (provided by Ceph).

Both already consider High Availability aspects by design, therefore it does not require much effort to make the storage highly available.

#### 2.6.4.1 Swift—Avoiding Points of Failure

The OpenStack Object Storage replicates the data by design, provided the following requirements are met:

- The option `Replicas` in the Swift barclamp is set to 3, the tested and recommended value.
- The number of Storage Nodes needs to be greater than the value set in the `Replicas` option.

1. To avoid single points of failure, assign the `swift-storage` role to multiple nodes.
2. To make the API highly available, assign the `swift-proxy` role to a cluster instead of assigning it to a single Control Node. See Section 2.6.2.1, “Control Node(s)—Avoiding Points of Failure”. Other swift roles must not be deployed on a cluster.

#### 2.6.4.2 Ceph—Avoiding Points of Failure

Ceph is a distributed storage solution that can provide High Availability. For High Availability redundant storage and monitors need to be configured in the Ceph cluster. For more information refer to the SUSE Enterprise Storage documentation at [http://www.suse.com/documentation/ses-4/](http://www.suse.com/documentation/ses-4/).
2.6.5  Cluster Requirements and Recommendations

When considering setting up one or more High Availability clusters, refer to the chapter System Requirements in the Administration Guide for SUSE Linux Enterprise High Availability Extension. The guide is available at http://www.suse.com/documentation/sle-ha-12/.

The HA requirements for Control Node also apply to SUSE OpenStack Cloud. Note that by buying SUSE OpenStack Cloud, you automatically get an entitlement for SUSE Linux Enterprise High Availability Extension.

Especially note the following requirements:

Number of Cluster Nodes
Each cluster needs to consist of at least two cluster nodes.

⚠️ Important: Odd Number of Cluster Nodes
We strongly recommend using an odd number of cluster nodes with a minimum of three nodes.

A cluster needs Quorum to keep services running. A three-node cluster can tolerate failure of only one node at a time, whereas a five-node cluster can tolerate failures of two nodes.

STONITH
The cluster software will shut down “misbehaving” nodes in a cluster to prevent them from causing trouble. This mechanism is called fencing or STONITH.

⚠️ Important: No Support Without STONITH
A cluster without STONITH is not supported.
For a supported HA setup, ensure the following:

- Each node in the High Availability cluster needs to have at least one STONITH device (usually a hardware device). We strongly recommend multiple STONITH devices per node, unless Stonith Block Device (SBD) is used.

- The global cluster options `stonith-enabled` and `startup-fencing` must be set to `true`. These options are set automatically when deploying the `Pacemaker` barclamp. When you change them, you will lose support.

- When deploying the `Pacemaker` service, select a `STONITH: Configuration mode for STONITH` that matches your setup. If your STONITH devices support the IPMI protocol, choosing the IPMI option is the easiest way to configure STONITH. Another alternative is SBD. It provides a way to enable STONITH and fencing in clusters without external power switches, but it requires shared storage. For SBD requirements, see [http://linux-ha.org/wiki/SBD_Fencing](http://linux-ha.org/wiki/SBD_Fencing), section `Requirements`.


**Network Configuration**

⚠️ **Important: Redundant Communication Paths**

For a supported HA setup, it is required to set up cluster communication via two or more redundant paths. For this purpose, use network device bonding and team network mode in your Crowbar network setup. For details, see Section 2.1.2.3, “Team Network Mode”. At least two Ethernet cards per cluster node are required for network redundancy. We advise using team network mode everywhere (not only between the cluster nodes) to ensure redundancy.

For more information, refer to the Administration Guide, available at [http://www.suse.com/documentation/sle-ha-12/](http://www.suse.com/documentation/sle-ha-12/). Especially read the following chapter: `Network Device Bonding`. Using a second communication channel (ring) in Corosync (as an alternative to network device bonding) is not supported yet in SUSE OpenStack Cloud. By default, SUSE OpenStack Cloud uses the admin network (typically `eth0`) for the first Corosync ring.
Important: Dedicated Networks

The `corosync` network communication layer is crucial to the health of the cluster. `corosync` traffic always goes over the admin network.

- Use redundant communication paths for the `corosync` network communication layer.

- Do not place the `corosync` network communication layer on interfaces shared with any other networks that could experience heavy load, such as the OpenStack public / private / SDN / storage networks.

Similarly, if SBD over iSCSI is used as a STONITH device (see STONITH), do not place the iSCSI traffic on interfaces that could experience heavy load, because this might disrupt the SBD mechanism.

Storage Requirements

The following services require shared storage: `database-server` and `rabbitmq-server`. For this purpose, use either an external NFS share or a Distributed Replicated Block Device (DRBD).

If you are using an external NFS share, the following additional requirements are important:

- The share needs to be reliably accessible from all cluster nodes via redundant communication paths. See `Network Configuration`.

- The share needs to have certain settings in `/etc/exports` to be usable by the `database` barclamp. For details, see `Section 11.2.1, “HA Setup for the Database”` and `Section 11.3.1, “HA Setup for RabbitMQ”`.

If you are using DRDB, the following additional requirements are important:

- Because of a DRBD limitation, the cluster used for `database-server` and `rabbitmq-server` is restricted to two nodes.

- All nodes of the cluster that is used for `database-server` and `rabbitmq-server` need to have an additional hard disk that will be used for DRBD. For more information on DRBD, see the `DRBD` chapter in the Administration Guide, which is available at `http://www.suse.com/documentation/sle-ha-12/`.
When using SBD as STONITH device, additional requirements apply for the shared storage. For details, see http://linux-ha.org/wiki/SBD_Fencing, section Requirements.

2.6.6 For More Information

For a basic understanding and detailed information on the SUSE Linux Enterprise High Availability Extension (including the Pacemaker cluster stack), read the Administration Guide. It is available at http://www.suse.com/documentation/sle-ha-12/.

In addition to the chapters mentioned in Section 2.6.5, “Cluster Requirements and Recommendations”, the following chapters are especially recommended:

- **Product Overview**
- **Configuration and Administration Basics**

The Administration Guide also provides comprehensive information about the cluster management tools with which you can view and check the cluster status in SUSE OpenStack Cloud. They can also be used to look up details like configuration of cluster resources or global cluster options. Read the following chapters for more information:

- HA Web Console: Configuring and Managing Cluster Resources (Web Interface)
- **crm.sh**: Configuring and Managing Cluster Resources (Command Line)

2.7 Summary: Considerations and Requirements

As outlined above, there are some important considerations to be made before deploying SUSE OpenStack Cloud. The following briefly summarizes what was discussed in detail in this chapter. Keep in mind that as of SUSE OpenStack Cloud 7 it is not possible to change some aspects such as the network setup when SUSE OpenStack Cloud is deployed!

**NETWORK**

- If you do not want to stick with the default networks and addresses, define custom networks and addresses. You need five different networks. If you need to separate the admin and the BMC network, a sixth network is required. See Section 2.1, “Network” for details. Networks that share interfaces need to be configured as VLANs.
• The SUSE OpenStack Cloud networks are completely isolated, therefore it is not required to use public IP addresses for them. A class C network as used in this documentation may not provide enough addresses for a cloud that is supposed to grow. You may alternatively choose addresses from a class B or A network.

• Determine how to allocate addresses from your network. Make sure not to allocate IP addresses twice. See Section 2.1.1, “Network Address Allocation” for the default allocation scheme.

• Define which network mode to use. Keep in mind that all machines within the cloud (including the Administration Server) will be set up with the chosen mode and therefore need to meet the hardware requirements. See Section 2.1.2, “Network Modes” for details.

• Define how to access the admin and BMC network(s): no access from the outside (no action is required), via an external gateway (gateway needs to be provided), or via bastion network. See Section 2.1.3, “Accessing the Administration Server via a Bastion Network” for details.

• Provide a gateway to access the public network (public, nova-floating).

• Make sure the Administration Server’s host name is correctly configured (hostname -f needs to return a fully qualified host name). If this is not the case, run YaST > Network Services > Hostnames and add a fully qualified host name.

• Prepare a list of MAC addresses and the intended use of the corresponding host for all OpenStack nodes.

UPDATE REPOSITORIES

• Depending on your network setup you have different options for providing up-to-date update repositories for SUSE Linux Enterprise Server and SUSE OpenStack Cloud for SUSE OpenStack Cloud deployment: using an existing SMT or SUSE Manager server, installing SMT on the Administration Server, synchronizing data with an existing repository, mounting remote repositories, or using physical media. Choose the option that best matches your needs.

STORAGE

• Decide whether you want to deploy the object storage service Swift. If so, you need to deploy at least two nodes with sufficient disk space exclusively dedicated to Swift.
• Decide which back-end to use with Cinder. If using the raw back-end (local disks) we strongly recommend using a separate node equipped with several hard disks for deploying cinder-volume. Ceph needs a minimum of four exclusive nodes with sufficient disk space.

• Make sure all Compute Nodes are equipped with sufficient hard disk space.

SSL ENCRYPTION

• Decide whether to use different SSL certificates for the services and the API, or whether to use a single certificate.

• Get one or more SSL certificates certified by a trusted third party source.

HARDWARE AND SOFTWARE REQUIREMENTS

• Make sure the hardware requirements for the different node types are met.

• Make sure to have all required software at hand.

2.8 Overview of the SUSE OpenStack Cloud Installation

Deploying and installing SUSE OpenStack Cloud is a multi-step process. Start by deploying a basic SUSE Linux Enterprise Server installation and the SUSE OpenStack Cloud add-on product to the Administration Server. Then the product and update repositories need to be set up and the SUSE OpenStack Cloud network needs to be configured. Next, complete the Administration Server setup. After the Administration Server is ready, you can start deploying and configuring the OpenStack nodes. The complete node deployment is done automatically via Crowbar and Chef from the Administration Server. All you need to do is to boot the nodes using PXE and to deploy the OpenStack components to them.

1. Install SUSE Linux Enterprise Server 12 SP2 on the Administration Server with the add-on product SUSE OpenStack Cloud. Optionally select the Subscription Management Tool (SMT) pattern for installation. See Chapter 3, Installing the Administration Server.

2. Optionally set up and configure the SMT server on the Administration Server. See Chapter 4, Installing and Setting Up an SMT Server on the Administration Server (Optional).

4. Set up the network on the Administration Server. See *Chapter 6, Service Configuration: Administration Server Network Configuration*. 

5. Perform the Crowbar setup to configure the SUSE OpenStack Cloud network and to make the repository locations known. When the configuration is done, start the SUSE OpenStack Cloud Crowbar installation. See *Chapter 7, Crowbar Setup*. 

6. Boot all nodes onto which the OpenStack components should be deployed using PXE and allocate them in the Crowbar Web interface to start the automatic SUSE Linux Enterprise Server installation. See *Chapter 10, Installing the OpenStack Nodes*. 

7. Configure and deploy the OpenStack components via the Crowbar Web interface or command line tools. See *Chapter 11, Deploying the OpenStack Services*. 

8. When all OpenStack components are up and running, SUSE OpenStack Cloud is ready. The cloud administrator can now upload images to enable users to start deploying instances. See the *Administrator Guide* and the *Supplement to Administrator Guide and End User Guide*. 
Ⅱ Setting Up the Administration Server

3 Installing the Administration Server 47

4 Installing and Setting Up an SMT Server on the Administration Server (Optional) 50

5 Software Repository Setup 54

6 Service Configuration: Administration Server Network Configuration 65

7 Crowbar Setup 67

8 Starting the SUSE OpenStack Cloud Crowbar installation 104
3 Installing the Administration Server

In this chapter you will learn how to install the Administration Server from scratch. It will run on SUSE Linux Enterprise Server 12 SP2 and include the SUSE OpenStack Cloud extension and, optionally, the Subscription Management Tool (SMT) server. Prior to starting the installation, refer to Section 2.4, “Hardware Requirements” and Section 2.5, “Software Requirements”.

3.1 Starting the Operating System Installation


The following sections will only cover the differences from the default installation process.

3.2 Registration and Online Updates

Registering SUSE Linux Enterprise Server 12 SP2 during the installation process is required for getting product updates and for installing the SUSE OpenStack Cloud extension. Refer to the SUSE Customer Center Registration (http://www.suse.com/documentation/sles-12/book_sle_deployment/data/sec_i_yast2_conf_manual_cc.html) section of the SUSE Linux Enterprise Server 12 SP2 Deployment Guide for further instructions.

After a successful registration you will be asked whether to add the update repositories. If you agree, the latest updates will automatically be installed, ensuring that your system is on the latest patch level after the initial installation. We strongly recommend adding the update repositories immediately. If you choose to skip this step you need to perform an online update later, before starting the SUSE OpenStack Cloud Crowbar installation.
3.3 Installing the SUSE OpenStack Cloud Extension

SUSE OpenStack Cloud is an extension to SUSE Linux Enterprise Server. Installing it during the SUSE Linux Enterprise Server installation is the easiest and recommended way to set up the Administration Server. To get access to the extension selection dialog, you need to register SUSE Linux Enterprise Server 12 SP2 during the installation. After a successful registration, the SUSE Linux Enterprise Server 12 SP2 installation continues with the *Extension & Module Selection*. Choose *SUSE OpenStack Cloud 7* and provide the registration key you obtained by purchasing SUSE OpenStack Cloud. The registration and the extension installation require an Internet connection.

Alternatively, install the SUSE OpenStack Cloud after the SUSE Linux Enterprise Server 12 SP2 installation via *YaST > Software > Add-On Products*. For details, refer to the section *Installing Modules and Extensions from Online Channels* (https://www.suse.com/documentation/sles-12/book_sle_deployment/data/sec_add-ons_extensions.html) of the SUSE Linux Enterprise Server 12 SP2 Deployment Guide.

3.4 Partitioning

Currently, Crowbar requires `/opt` to be writable. We recommend creating a separate partition or volume formatted with XFS for `/srv` with a size of at least 30 GB.

The default file system on SUSE Linux Enterprise Server 12 SP2 is Btrfs with snapshots enabled. SUSE OpenStack Cloud installs into `/opt`, a directory that is excluded from snapshots. Reverting to a snapshot may therefore break the SUSE OpenStack Cloud installation. We recommend disabling Btrfs snapshots on the Administration Server.

Help on using the partitioning tool is available at the section *Using the YaST Partitioner* (http://www.suse.com/documentation/sles11/book_sle_deployment/data/sec_yast2_i_y2_part_expert.html) of the SUSE Linux Enterprise Server 12 SP2 Deployment Guide.
3.5 Installation Settings

In the final installation step, Installation Settings, you need to adjust the software selection and the firewall settings for your Administration Server setup. For more information refer to the Installation Settings (http://www.suse.com/documentation/sles-12/book_sle_deployment/data/sec_i_yast2_proposal.html) section of the SUSE Linux Enterprise Server 12 SP2 Deployment Guide.

3.5.1 Software Selection

Installing a minimal base system is sufficient to set up the Administration Server. The following patterns are the minimum required:

- **Base System**
- **Minimal System (Appliances)**
- **Meta Package for Pattern cloud_admin** (in case you have chosen to install the SUSE OpenStack Cloud Extension)
- **Subscription Management Tool** (optional, also see Tip: Installing a Local SMT Server (Optional))

**Tip: Installing a Local SMT Server (Optional)**

If you do not have a SUSE Manager or SMT server in your organization, or are planning to manually update the repositories required for deployment of the SUSE OpenStack Cloud nodes, you need to set up an SMT server on the Administration Server. Choose the pattern Subscription Management Tool in addition to the patterns listed above to install the SMT server software.

3.5.2 Firewall Settings

SUSE OpenStack Cloud requires disabling the firewall on the Administration Server. You can disable the firewall during installation in the Firewall and SSH section. If your environment requires a firewall to be active at this stage of the installation, you can disable the firewall during your final network configuration (see Chapter 6, Service Configuration: Administration Server Network Configuration). Optionally, you can also enable SSH access to the Administration Server in this section.
4 Installing and Setting Up an SMT Server on the Administration Server (Optional)

One way to provide the repositories needed to set up the nodes in SUSE OpenStack Cloud is to install a Subscription Management Tool (SMT) server on the Administration Server, and then mirror all repositories from SUSE Customer Center via this server. Installing an SMT server on the Administration Server is optional. If your organization already provides an SMT server or a SUSE Manager server that can be accessed from the Administration Server, skip this step.

⚠️ Important: Use of SMT Server and Ports

When installing an SMT server on the Administration Server, use it exclusively for SUSE OpenStack Cloud. To use the SMT server for other products, run it outside of SUSE OpenStack Cloud. Make sure it can be accessed from the Administration Server for mirroring the repositories needed for SUSE OpenStack Cloud.

When the SMT server is installed on the Administration Server, Crowbar provides the mirrored repositories on port 8091.

4.1 SMT Installation

If you have not installed the SMT server during the initial Administration Server installation as suggested in Section 3.5.1, “Software Selection”, run the following command to install it:

```bash
sudo zypper in -t pattern smt
```

4.2 SMT Configuration

No matter whether the SMT server was installed during the initial installation or in the running system, it needs to be configured with the following steps.
Note: Prerequisites

To configure the SMT server, a SUSE account is required. If you do not have such an account, register at http://www.suse.com/login. All products and extensions for which you want to mirror updates with the SMT server should be registered at the SUSE Customer Center (http://scc.suse.com/).

1. Configuring the SMT server requires you to have your mirroring credentials (user name and password) and your registration e-mail address at hand. To access them, proceed as follows:

   a. Open a Web browser and log in to the SUSE Customer Center at http://scc.suse.com/.
   b. Click your name to see the e-mail address which you have registered.
   c. Click Organization > Organization Credentials to obtain your mirroring credentials (user name and password).

2. Start YaST > Network Services > SMT Configuration Wizard.

3. Activate Enable Subscription Management Tool Service (SMT).

4. Enter the Customer Center Configuration data as follows:

   Use Custom Server: Do not activate this option
   User: The user name you retrieved from the SUSE Customer Center
   Password: The password you retrieved from the SUSE Customer Center
   Check your input with Test. If the test does not return success, check the credentials you entered.

5. Enter the e-mail address you retrieved from the SUSE Customer Center at SCC E-Mail Used for Registration.

6. Your SMT Server URL shows the HTTP address of your server. Usually it should not be necessary to change it.

7. Select Next to proceed to step two of the SMT Configuration Wizard.

8. Enter a Database Password for SMT User and confirm it by entering it once again.

9. Enter one or more e-mail addresses to which SMT status reports are sent by selecting Add.
10. Select Next to save your SMT configuration. When setting up the database you will be prompted for the MariaDB root password. If you have not already created one then create it in this step. Note that this is the global MariaDB root password, not the database password for the SMT user you specified before.

The SMT server requires a server certificate at /etc/pki/trust/anchors/YaST-CA.pem. Choose Run CA Management, provide a password and choose Next to create such a certificate. If your organization already provides a CA certificate, Skip this step and import the certificate via YaST > Security and Users > CA Management after the SMT configuration is done. See http://www.suse.com/documentation/sles-12/book_security/data/cha_security_yast_ca.html for more information.

After you complete your configuration a synchronization check with the SUSE Customer Center will run, which may take several minutes.

4.3 Setting up Repository Mirroring on the SMT Server

The final step in setting up the SMT server is configuring it to mirror the repositories needed for SUSE OpenStack Cloud. The SMT server mirrors the repositories from the SUSE Customer Center. Make sure to have the appropriate subscriptions registered in SUSE Customer Center with the same e-mail address you specified when configuring SMT. For details on the required subscriptions refer to Section 2.5, “Software Requirements”.

4.3.1 Adding Mandatory Repositories

Mirroring the SUSE Linux Enterprise Server 12 SP2 and SUSE OpenStack Cloud 7 repositories is mandatory. Run the following commands as user root to add them to the list of mirrored repositories:

```bash
for REPO in SLES12-SP2-{Pool,Updates} SUSE-OpenStack-Cloud-7-{Pool,Updates}; do
  smt-repos $REPO sle-12-x86_64 -e
done
```
4.3.2 Adding Optional Repositories

The following optional repositories provide high availability and storage:

**High Availability**

For the optional HA setup you need to mirror the SLE-HA12-SP2 repositories. Run the following commands as user `root` to add them to the list of mirrored repositories:

```bash
for REPO in SLE-HA12-SP2-{Pool,Updates}; do
    smt-repos $REPO sle-12-x86_64 -e
done
```

**SUSE Enterprise Storage**

The SUSE Enterprise Storage repositories are needed if you plan to deploy Ceph with SUSE OpenStack Cloud. Run the following commands as user `root` to add them to the list of mirrored repositories:

```bash
for REPO in SUSE-Enterprise-Storage-4-{Pool,Updates}; do
    smt-repos $REPO sle-12-x86_64 -e
done
```

4.3.3 Updating the Repositories

New repositories added to SMT must be updated immediately by running the following command as user `root`:

```bash
smt-mirror -L /var/log/smt/smt-mirror.log
```

This command will download several GB of patches. This process may last up to several hours. A log file is written to `/var/log/smt/smt-mirror.log`. After this first manual update the repositories are updated automatically via cron job. A list of all repositories and their location in the file system on the Administration Server can be found at *Table 5.2, “SMT Repositories Hosted on the Administration Server”*. 

4.4 For More Information

5 Software Repository Setup

Nodes in SUSE OpenStack Cloud are automatically installed from the Administration Server. For this to happen, software repositories containing products, extensions, and the respective updates for all software need to be available on or accessible from the Administration Server. In this configuration step, these repositories are made available. There are two types of repositories:

**Product Media Repositories**: Product media repositories are copies of the installation media. They need to be directly copied to the Administration Server, “loop-mounted” from an ISO image, or mounted from a remote server via NFS. Affected are SUSE Linux Enterprise Server 12 SP2 and SUSE OpenStack Cloud 7. These are static repositories; they do not change or receive updates. See Section 5.1, “Copying the Product Media Repositories” for setup instructions.

**Update and Pool Repositories**: Update and Pool repositories are provided by the SUSE Customer Center. They contain all updates and patches for the products and extensions. To make them available for SUSE OpenStack Cloud they need to be mirrored from the SUSE Customer Center. Since their content is regularly updated, they must be kept in synchronization with SUSE Customer Center. For these purposes, SUSE provides either the Subscription Management Tool (SMT) or the SUSE Manager.

### 5.1 Copying the Product Media Repositories

The files in the product repositories for SUSE Linux Enterprise Server and SUSE OpenStack Cloud do not change, therefore they do not need to be synchronized with a remote source. It is sufficient to either copy the data (from a remote host or the installation media), to mount the product repository from a remote server via **NFS**, or to loop mount a copy of the installation images.
**Important: No Symbolic Links for the SUSE Linux Enterprise Server Repository**

Note that the SUSE Linux Enterprise Server product repository *must* be directly available from the local directory listed below. It is not possible to use a symbolic link to a directory located elsewhere, since this will cause booting via PXE to fail.

**Tip: Providing the SUSE OpenStack Cloud Repository via HTTP**

The SUSE Linux Enterprise Server product repositories need to be available locally to enable booting via PXE for node deployment. The SUSE OpenStack Cloud repository may also be served via `http` from a remote host. In this case, enter the URL to the `Cloud` repository as described in Section 7.4, “Repositories”.

We recommend copying the data to the Administration Server as the best solution. It does not require much hard disk space (approximately 350 MB). Nor does it require the Administration Server to access a remote host from a different network.

The following product media must be copied to the specified directories:

<table>
<thead>
<tr>
<th>Repository</th>
<th>Directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUSE Linux Enterprise Server 12 SP2 DVD #1</td>
<td>/srv/tftpboot/suse-12.2/x86_64/install</td>
</tr>
<tr>
<td>SUSE OpenStack Cloud 7 DVD #1</td>
<td>/srv/tftpboot/suse-12.2/x86_64/repos/Cloud</td>
</tr>
</tbody>
</table>

The data can be copied by a variety of methods:

**Copying from the Installation Media**

We recommended using `rsync` for copying. If the installation data is located on a removable device, make sure to mount it first (for example, after inserting the DVD1 in the Administration Server and waiting for the device to become ready):

```
mkdir -p /srv/tftpboot/suse-12.2/x86_64/install
```
Copying the Product Media Repositories

SUSE OpenStack Cloud 7 DVD#1

```
mount /dev/dvd /mnt
rsync -avP /mnt/ /srv/tftpboot/suse-12.2/x86_64/install/
umount /mnt
```

Copying from a Remote Host

If the data is provided by a remote machine, log in to that machine and push the data to
the Administration Server (which has the IP address **192.168.124.10** in the following example):

SUSE Linux Enterprise Server 12 SP2 DVD#1

```
mkdir -p /srv/tftpboot/suse-12.2/x86_64/install
rsync -avPz /data/SLES-12-SP2/DVD1/ 192.168.124.10:/srv/tftpboot/suse-12.2/x86_64/install/
```

SUSE OpenStack Cloud 7 DVD#1

```
mkdir -p /srv/tftpboot/suse-12.2/x86_64/repos/Cloud
rsync -avP /data/SUSE-OPENSTACK-CLOUD//DVD1/ 192.168.124.10:/srv/tftpboot/suse-12.2/x86_64/repos/Cloud/
```

Mounting from an NFS Server

If the installation data is provided via NFS by a remote machine, mount the respective
shares as follows. To automatically mount these directories either create entries in **/etc/fstab** or set up the automounter.

SUSE Linux Enterprise Server 12 SP2 DVD#1

```
mkdir -p /srv/tftpboot/suse-12.2/x86_64/install
mount -t nfs nfs.example.com:/exports/SLES-12-SP2/x86_64/DVD1/ /srv/tftpboot/suse-12.2/x86_64/install
```
Update and Pool Repositories

Update and Pool Repositories are required on the Administration Server to set up and maintain the SUSE OpenStack Cloud nodes. They are provided by SUSE Customer Center and contain all software packages needed to install SUSE Linux Enterprise Server 12 SP2 and the extensions (pool repositories). In addition, they contain all updates and patches (update repositories). Update repositories are used when deploying the nodes that build SUSE OpenStack Cloud to ensure they are initially equipped with the latest software versions available.

The repositories can be made available on the Administration Server using one or more of the following methods:

- Section 5.2.1, “Repositories Hosted on an SMT Server Installed on the Administration Server”
- Section 5.2.2, “Repositories Hosted on a Remote SMT Server”
5.2.1 Repositories Hosted on an SMT Server Installed on the Administration Server

When all update and pool repositories are managed by an SMT server installed on the Administration Server (see Chapter 4, Installing and Setting Up an SMT Server on the Administration Server (Optional)), make sure the repository location in YaST Crowbar is set to Local SMT Server (this is the default). For details, see Section 7.4, “Repositories”. No further action is required. The SUSE OpenStack Cloud Crowbar installation automatically detects all available repositories.

5.2.2 Repositories Hosted on a Remote SMT Server

To use repositories from a remote SMT server, you first need to make sure all required repositories are mirrored on the server. Refer to Section 4.3, “Setting up Repository Mirroring on the SMT Server” for more information. When all update and pool repositories are managed by a remote SMT server, make sure the repository location in YaST Crowbar is set to Remote SMT Server. For details, see Section 7.4, “Repositories”. No further action is required. The SUSE OpenStack Cloud Crowbar installation automatically detects all available repositories.

Note: Accessing an External SMT Server

In SUSE OpenStack Cloud, only the Administration Server needs to be able to access the external SMT server. A network connection can either be established via a bastion network (see Section 7.3.1, “Setting Up a Bastion Network” or an external gateway.

5.2.3 Repositories Hosted on a SUSE Manager Server

To use repositories from SUSE Manager you first need to make sure all required products and extensions are registered, and the corresponding channels are mirrored in SUSE Manager (refer to Table 5.4, “SUSE Manager Repositories (Channels)” for a list of channels).
Important: Accessing a SUSE Manager Server

An external SUSE Manager server needs to be accessible to all nodes in SUSE OpenStack Cloud. The network hosting the SUSE Manager server must be added to the network definitions as described in Section 7.5.8, “Providing Access to External Networks”.

By default SUSE Manager does not expose repositories for direct access. To access them via https, you need to create a Distribution for auto-installation for the SUSE Linux Enterprise Server 12 SP2 (x86_64) product. Creating this distribution makes the update repositories for this product available, including the repositories for all registered add-on products (like SUSE OpenStack Cloud, SLES High Availability Extension and SUSE Enterprise Storage). Instructions for creating a distribution are in the SUSE Manager documentation in http://www.suse.com/documentation/suse_manager/.

During the distribution setups you need to provide a Label for each the distribution. This label will be part of the URL under which the repositories are available. We recommend choosing a name consisting of characters that do not need to be URL-encoded. In Table 5.4, “SUSE Manager Repositories (Channels)” we assume the following label has been provided: sles12-sp2-x86_64.

When all update and pool repositories are managed by a SUSE Manager server, make sure the repository location in YaST Crowbar is set to SUSE Manager Server. For details, see Section 7.4, “Repositories”. No further action is required. The SUSE OpenStack Cloud Crowbar installation automatically detects all available repositories.

The autoinstallation tree provided by SUSE Manager does not provide the SLES Pool repository. Although this repository is not used for node installation, it needs to be present. To work around this issue, it is sufficient to create an empty Pool repository for SUSE Linux Enterprise Server 12 SP2:

```bash
mkdir /srv/tftpboot/suse-12.2/x86_64/repos/SLES12-SP2-Pool/
createrepo /srv/tftpboot/suse-12.2/x86_64/repos/SLES12-SP2-Pool/
```
5.2.4 Alternative Ways to Make the Repositories Available

If you want to keep your SUSE OpenStack Cloud network as isolated from the company network as possible, or your infrastructure does not allow accessing a SUSE Manager or an SMT server, you can alternatively provide access to the required repositories by one of the following methods:

- Mount the repositories from a remote server.
- Synchronize the repositories from a remote server (for example via `rsync` and cron).
- Manually synchronize the update repositories from removable media.

We strongly recommended making the repositories available at the default locations on the Administration Server as listed in Table 5.5, “Default Repository Locations on the Administration Server”. When choosing these locations, it is sufficient to set the repository location in YaST Crowbar to `Custom`. You do not need to specify a detailed location for each repository. Refer to Section 7.4, “Repositories” for details. If you prefer to use different locations, you need to announce each location with YaST Crowbar.

5.3 Software Repository Sources for the Administration Server Operating System

During the installation of the Administration Server, repository locations for SUSE Linux Enterprise Server 12 SP2 are automatically added to the Administration Server. They point to the source used to install the Administration Server and to the SUSE Customer Center. These repository locations have no influence on the repositories used to set up nodes in the cloud. They are solely used to maintain and update the Administration Server itself.

However, as the Administration Server and all nodes in the cloud use the same operating system—SUSE Linux Enterprise Server 12 SP2—it makes sense to use the same repositories for the cloud and the Administration Server. To avoid downloading the same patches twice, change this setup so that the repositories set up for SUSE OpenStack Cloud deployment are also used on the Administration Server.

To do so, you need to disable or delete all services. In a second step all SUSE Linux Enterprise Server and SUSE OpenStack Cloud repositories need to be edited to point to the alternative sources. Use either Zypper or YaST to edit the repository setup. Note that changing the repository setup on the Administration Server is optional.
5.4 Repository Locations

The following tables show the locations of all repositories that can be used for SUSE OpenStack Cloud.

**TABLE 5.2: SMT REPOSITORIES HOSTED ON THE ADMINISTRATION SERVER**

<table>
<thead>
<tr>
<th>Repository</th>
<th>Directory</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Repositories</strong></td>
<td></td>
</tr>
<tr>
<td>SLES12-SP2-Pool</td>
<td>/srv/www/htdocs/repo/SUSE/Products/SLE-SERVER/12-SP2/x86_64/product/</td>
</tr>
<tr>
<td>SLES12-SP2-Updates</td>
<td>/srv/www/htdocs/repo/SUSE/Updates/SLE-SERVER/12-SP2/x86_64/update/</td>
</tr>
<tr>
<td>SUSE-OpenStack-Cloud-7-Pool</td>
<td>/srv/www/htdocs/repo/SUSE/Products/OpenStack-Cloud/7/x86_64/product/</td>
</tr>
<tr>
<td>SUSE-OpenStack-Cloud-7-UpDATES</td>
<td>/srv/www/htdocs/repo/SUSE/Updates/OpenStack-Cloud/7/x86_64/update/</td>
</tr>
<tr>
<td><strong>Optional Repositories</strong></td>
<td></td>
</tr>
<tr>
<td>SLE-HA12-SP2-Pool</td>
<td>/srv/www/htdocs/repo/SUSE/Products/SLE-HA/12-SP2/x86_64/product/</td>
</tr>
<tr>
<td>SLE-HA12-SP2-Updates</td>
<td>/srv/www/htdocs/repo/SUSE/Updates/SLE-HA/12-SP2/x86_64/update/</td>
</tr>
<tr>
<td>SUSE-Enterprise-Storage-4-Pool</td>
<td>/srv/www/htdocs/repo/SUSE/Products/Storage/4/x86_64/product/</td>
</tr>
<tr>
<td>SUSE-Enterprise-Storage-4-UpDATES</td>
<td>/srv/www/htdocs/repo/SUSE/Updates/Storage/4/x86_64/update/</td>
</tr>
</tbody>
</table>
### TABLE 5.3: SMT REPOSITORIES HOSTED ON A REMOTE SERVER

<table>
<thead>
<tr>
<th>Repository</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Repositories</strong></td>
<td></td>
</tr>
<tr>
<td>SLES12-SP2-Pool</td>
<td><a href="http://smt.example.com/repo/SUSE/Products/SLE-SERVER/12-SP2/x86_64/product/">http://smt.example.com/repo/SUSE/Products/SLE-SERVER/12-SP2/x86_64/product/</a></td>
</tr>
<tr>
<td>SLES12-SP2-Updates</td>
<td><a href="http://smt.example.com/repo/SUSE/Updates/SLE-SERVER/12-SP2/x86_64/update/">http://smt.example.com/repo/SUSE/Updates/SLE-SERVER/12-SP2/x86_64/update/</a></td>
</tr>
<tr>
<td>SUSE-OpenStack-Cloud-7-Pool</td>
<td><a href="http://smt.example.com/repo/SUSE/Products/OpenStack-Cloud/7/x86_64/product/">http://smt.example.com/repo/SUSE/Products/OpenStack-Cloud/7/x86_64/product/</a></td>
</tr>
<tr>
<td>SUSE-OpenStack-Cloud-7-Updates</td>
<td><a href="http://smt.example.com/repo/SUSE/Updates/OpenStack-Cloud/7/x86_64/update/">http://smt.example.com/repo/SUSE/Updates/OpenStack-Cloud/7/x86_64/update/</a></td>
</tr>
<tr>
<td><strong>Optional Repositories</strong></td>
<td></td>
</tr>
<tr>
<td>SLE-HA12-SP2-Pool</td>
<td><a href="http://smt.example.com/repo/SUSE/Products/SLE-HA/12-SP2/x86_64/product/">http://smt.example.com/repo/SUSE/Products/SLE-HA/12-SP2/x86_64/product/</a></td>
</tr>
<tr>
<td>SLE-HA12-SP2-Updates</td>
<td><a href="http://smt.example.com/repo/SUSE/Updates/SLE-HA/12-SP2/x86_64/update/">http://smt.example.com/repo/SUSE/Updates/SLE-HA/12-SP2/x86_64/update/</a></td>
</tr>
<tr>
<td>SUSE-Enterprise-Storage-4-Pool</td>
<td><a href="http://smt.example.com/repo/SUSE/Products/Storage/4/x86_64/product/">http://smt.example.com/repo/SUSE/Products/Storage/4/x86_64/product/</a></td>
</tr>
<tr>
<td>SUSE-Enterprise-Storage-4-Updates</td>
<td><a href="http://smt.example.com/repo/SUSE/Updates/Storage/4/x86_64/update/">http://smt.example.com/repo/SUSE/Updates/Storage/4/x86_64/update/</a></td>
</tr>
</tbody>
</table>

### TABLE 5.4: SUSE MANAGER REPOSITORIES (CHANNELS)

<table>
<thead>
<tr>
<th>Repository</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Repositories</strong></td>
<td></td>
</tr>
<tr>
<td>SLES12-SP2-Updates</td>
<td><a href="http://manager.example.com/ks/dist/child/sles12-sp2-updates-x86_64/sles12-sp2-x86_64/">http://manager.example.com/ks/dist/child/sles12-sp2-updates-x86_64/sles12-sp2-x86_64/</a></td>
</tr>
</tbody>
</table>
The following table shows the recommended default repository locations to use when manually copying, synchronizing, or mounting the repositories. When choosing these locations, it is sufficient to set the repository location in YaST Crowbar to Custom. You do not need to specify a detailed location for each repository. Refer to Section 5.2.4, “Alternative Ways to Make the Repositories Available” and Section 7.4, “Repositories” for details.

**TABLE 5.5: DEFAULT REPOSITORY LOCATIONS ON THE ADMINISTRATION SERVER**

<table>
<thead>
<tr>
<th>Channel</th>
<th>Directory on the Administration Server</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Repositories</strong></td>
<td></td>
</tr>
<tr>
<td>SLES12-SP2-Pool</td>
<td>/srv/tftpboot/suse-12.2/x86_64/repos/SLES12-SP2-Pool/</td>
</tr>
<tr>
<td>SLES12-SP2-Updates</td>
<td>/srv/tftpboot/suse-12.2/x86_64/repos/SLES12-SP2-Updates/</td>
</tr>
<tr>
<td>SUSE-OpenStack-Cloud-7-Pool</td>
<td>/srv/tftpboot/suse-12.2/x86_64/repos/SUSE-OpenStack-Cloud-7-Pool/</td>
</tr>
<tr>
<td>Channel</td>
<td>Directory on the Administration Server</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>SUSE-OpenStack-Cloud-7-Updates</td>
<td>/srv/tftpboot/suse-12.2/x86_64/repos/SUSE-OpenStack-Cloud-7-Updates</td>
</tr>
<tr>
<td>Optional Repositories</td>
<td></td>
</tr>
<tr>
<td>SLE-HA12-SP2-Pool</td>
<td>/srv/tftpboot/suse-12.2/x86_64/repos/SLE-HA12-SP2</td>
</tr>
<tr>
<td>SLE-HA12-SP2-Updates</td>
<td>/srv/tftpboot/suse-12.2/x86_64/repos/SLE-HA12-SP2-Updates</td>
</tr>
<tr>
<td>SUSE-Enterprise-Storage-4-Pool</td>
<td>/srv/tftpboot/suse-12.2/x86_64/repos/SUSE-Enterprise-Storage-4-Pool</td>
</tr>
<tr>
<td>SUSE-Enterprise-Storage-4-Updates</td>
<td>/srv/tftpboot/suse-12.2/x86_64/repos/SUSE-Enterprise-Storage-4-Updates</td>
</tr>
</tbody>
</table>
6 Service Configuration: Administration Server
Network Configuration

Prior to starting the SUSE OpenStack Cloud Crowbar installation, make sure the first network interface (eth0) gets a fixed IP address from the admin network. A host and domain name also need to be provided. Other interfaces will be automatically configured during the SUSE OpenStack Cloud Crowbar installation.

To configure the network interface proceed as follows:


2. Switch to the Overview tab, select the interface with the Device identifier, eth0 and choose Edit.

3. Switch to the Address tab and activate Statically Assigned IP Address. Provide an IPv4 IP Address, a Subnet Mask, and a fully qualified Hostname. Examples in this book assume the default IP address of 192.168.124.10 and a network mask of 255.255.255.0. Using a different IP address requires adjusting the Crowbar configuration in a later step as described in Chapter 7, Crowbar Setup.

4. Check the settings on the General tab. The device needs to be activated At Boot Time. Confirm your settings with Next.

5. Back on the Network Settings dialog, switch to the Routing tab and enter a Default IPv4 Gateway. The address depends on whether you have provided an external gateway for the admin network. In that case, use the address of that gateway. If not, use xxx.xxx.xxx.xxx.1, for example, 192.168.124.1. Confirm your settings with OK.

6. Choose Hostname/DNS from the Network Settings dialog and set the Hostname and Domain Name. Examples in this book assume admin.cloud.example.com for the host/domain name.

   If the Administration Server has access to the outside, you can add additional name servers here that will automatically be used to forward requests. The Administration Server’s name server will automatically be configured during the SUSE OpenStack Cloud Crowbar installation to forward requests for non-local records to those server(s).

7. Last, check if the firewall is disabled. Return to YaST’s main menu (YaST Control Center) and start Security and Users > Firewall. On Start-Up > Service Start, the firewall needs to be disabled. Confirm your settings with Next.
Important: Administration Server Domain Name and Host name

Setting up the SUSE OpenStack Cloud will also install a DNS server for all nodes in the cloud. The domain name you specify for the Administration Server will be used for the DNS zone. It is required to use a sub-domain such as `cloud.example.com`. See Section 2.1.4, “DNS and Host Names” for more information.

The host name and the FQDN need to be resolvable with `hostname -f`. Double-check whether `/etc/hosts` contains an appropriate entry for the Administration Server. It should look like the following:

```
192.168.124.10 admin.cloud.example.com admin
```

It is *not* possible to change the Administration Server host name or the FQDN after the SUSE OpenStack Cloud Crowbar installation has been completed.
7 Crowbar Setup

The YaST Crowbar module enables you to configure all networks within the cloud, to set up additional repositories, and to manage the Crowbar users. This module should be launched before starting the SUSE OpenStack Cloud Crowbar installation. To start this module, either run `yast crowbar` or YaST > Miscellaneous > Crowbar.

7.1 User Settings

On this tab you can manage users for the Crowbar Web interface. The user `crowbar` (password `crowbar`) is preconfigured. Use the Add, Edit, and Delete buttons to manage user accounts. Users configured here have no relation to existing system users on the Administration Server.

![YAST CROWBAR SETUP: USER SETTINGS](image)

FIGURE 7.1: YAST CROWBAR SETUP: USER SETTINGS

7.2 Networks

Use the Networks tab to change the default network setup (described in Section 2.1, “Network”). Change the IP address assignment for each network under Edit Ranges. You may also add a bridge (Add Bridge) or a VLAN (Use VLAN, VLAN ID) to a network. Only change the latter two settings if you really know what you require; we recommend sticking with the defaults.
Warning: No Network Changes After Completing the SUSE OpenStack Cloud Crowbar installation

After you have completed the SUSE OpenStack Cloud Crowbar installation, you cannot change the network setup. If you do need to change it, you must completely set up the Administration Server again.

Important: VLAN Settings

As of SUSE OpenStack Cloud 7, using a VLAN for the admin network is only supported on a native/untagged VLAN. If you need VLAN support for the admin network, it must be handled at switch level.

When deploying Compute Nodes with Microsoft Hyper-V or Windows Server, you must not use openvswitch with gre. Instead, use openvswitch with VLAN (recommended), or linuxbridge as a plugin for Neutron.
When changing the network configuration with YaST or by editing `/etc/crowbar/network.json`, you can define VLAN settings for each network. For the networks `nova-fixed` and `nova-floating`, however, special rules apply:

**nova-fixed**: The `USE VLAN` setting will be ignored. However, VLANs will automatically be used if deploying Neutron with VLAN support (using the drivers `linuxbridge`, `openvswitch` plus VLAN, or `cisco_nexus`). In this case, you need to specify a correct `VLAN ID` for this network.

**nova-floating**: When using a VLAN for `nova-floating` (which is the default), the `USE VLAN` and `VLAN ID` settings for `nova-floating` and `public` default to the same.

You have the option of separating public and floating networks with a custom configuration. Configure your own separate floating network (not as a subnet of the public network), and give the floating network its own router. For example, define `nova-floating` as part of an external network with a custom `bridge-name`. When you are using different networks and OpenVSwitch is configured, the pre-defined `bridge-name` won't work.

Other, more flexible network mode setups, can be configured by manually editing the Crowbar network configuration files. See Section 7.5, “Custom Network Configuration” for more information. SUSE or a partner can assist you in creating a custom setup within the scope of a consulting services agreement. See [http://www.suse.com/consulting/](http://www.suse.com/consulting/) for more information on SUSE consulting.

### 7.2.1 Separating the Admin and the BMC Network

If you want to separate the admin and the BMC network, you must change the settings for the networks `bmc` and `bmc_vlan`. The `bmc_vlan` is used to generate a VLAN tagged interface on the Administration Server that can access the `bmc` network. The `bmc_vlan` needs to be in the same ranges as `bmc`, and `bmc` needs to have `VLAN` enabled.

<table>
<thead>
<tr>
<th>TABLE 7.1: SEPARATE BMC NETWORK EXAMPLE CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>bmc</strong></td>
</tr>
<tr>
<td>Subnet</td>
</tr>
<tr>
<td>Netmask</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Router</td>
</tr>
<tr>
<td>Broadcast</td>
</tr>
<tr>
<td>VLAN</td>
</tr>
<tr>
<td>VLAN ID</td>
</tr>
<tr>
<td>Bridge</td>
</tr>
</tbody>
</table>

**FIGURE 7.3: YAST CROWBAR SETUP: NETWORK SETTINGS FOR THE BMC NETWORK**

### 7.3 Network Mode

On the *Network Mode* tab you can choose between *single*, *dual*, and *team*. In single mode, all traffic is handled by a single Ethernet card. Dual mode requires two Ethernet cards and separates traffic for private and public networks. See *Section 2.1.2, “Network Modes”* for details.
Team mode is similar to single mode, except that you combine several Ethernet cards to a “bond”. It is required for an HA setup of SUSE OpenStack Cloud. When choosing this mode, you also need to specify a Bonding Policy. This option lets you define whether to focus on reliability (fault tolerance), performance (load balancing), or a combination of both. You can choose from the following modes:

0 (balance-rr)
   Default mode in SUSE OpenStack Cloud. Packets are transmitted in round-robin fashion from the first to the last available interface. Provides fault tolerance and load balancing.

1 (active-backup)
   Only one network interface is active. If it fails, a different interface becomes active. This setting is the default for SUSE OpenStack Cloud. Provides fault tolerance.

2 (balance-xor)
   Traffic is split between all available interfaces based on the following policy: 
   \[
   (\text{source MAC address XOR'd with destination MAC address XOR packet type ID}) \mod \text{slave count}
   \] 
   Requires support from the switch. Provides fault tolerance and load balancing.

3 (broadcast)
   All traffic is broadcast on all interfaces. Requires support from the switch. Provides fault tolerance.

4 (802.3ad)
   Aggregates interfaces into groups that share the same speed and duplex settings. Requires ethtool support in the interface drivers, and a switch that supports and is configured for IEEE 802.3ad Dynamic link aggregation. Provides fault tolerance and load balancing.

5 (balance-tlb)
   Adaptive transmit load balancing. Requires ethtool support in the interface drivers but no switch support. Provides fault tolerance and load balancing.

6 (balance-alb)
   Adaptive load balancing. Requires ethtool support in the interface drivers but no switch support. Provides fault tolerance and load balancing.

For a more detailed description of the modes, see https://www.kernel.org/doc/Documentation/networking/bonding.txt.
### Setting Up a Bastion Network

The *Network Mode* tab of the YaST Crowbar module also lets you set up a Bastion network. As outlined in *Section 2.1, “Network”*, one way to access the Administration Server from a defined external network is via a Bastion network and a second network card (as opposed to providing an external gateway).

To set up the Bastion network, you need to have a static IP address for the Administration Server from the external network. The example configuration used below assumes that the external network from which to access the admin network has the following addresses. Adjust them according to your needs.

<table>
<thead>
<tr>
<th>TABLE 7.2: EXAMPLE ADDRESSES FOR A BASTION NETWORK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnet</td>
</tr>
<tr>
<td>Netmask</td>
</tr>
<tr>
<td>Broadcast</td>
</tr>
<tr>
<td>Gateway</td>
</tr>
<tr>
<td>Static Administration Server address</td>
</tr>
</tbody>
</table>

In addition to the values above, you need to enter the *Physical Interface Mapping*. With this value you specify the Ethernet card that is used for the bastion network. See *Section 7.5.5, “Network Conduits”* for details on the syntax. The default value `?1g2` matches the second interface (“eth1”) of the system.
Warning: No Network Changes After Completing the SUSE OpenStack Cloud Crowbar installation

After you have completed the SUSE OpenStack Cloud Crowbar installation, you cannot change the network setup. If you do need to change it, you must completely set up the Administration Server again.

Important: Accessing Nodes From Outside the Bastion Network

The example configuration from above allows access to the SUSE OpenStack Cloud nodes from within the bastion network. If you want to access nodes from outside the bastion network, make the router for the bastion network the default router for the Administration Server. This is achieved by setting the value for the bastion network's Router preference entry to a lower value than the corresponding entry for the admin network. By default no router preference is set for the Administration Server—in this case, set the preference for the bastion network to 5.

If you use a Linux gateway between the outside and the bastion network, you also need to disable route verification (rp_filter) on the Administration Server. Do so by running the following command on the Administration Server:

```
echo 0 > /proc/sys/net/ipv4/conf/all/rp_filter
```
That command disables route verification for the current session, so the setting will not survive a reboot. Make it permanent by editing `/etc/sysctl.conf` and setting the value for `net.ipv4.conf.all.rp_filter` to `0`.

### 7.4 Repositories

This dialog lets you announce the locations of the product, pool, and update repositories (see Chapter 5, Software Repository Setup for details). You can choose between four alternatives:

**Local SMT Server**

If you have an SMT server installed on the Administration Server as explained in Chapter 4, Installing and Setting Up an SMT Server on the Administration Server (Optional), choose this option. The repository details do not need to be provided as they will be configured automatically. This option will be applied by default if the repository configuration has not been changed manually.

**Remote SMT Server**

If you use a remote SMT for all repositories, choose this option and provide the *Server URL* (in the form of `http://smt.example.com`). The repository details do not need to be provided, they will be configured automatically.

**SUSE Manager Server**

If you use a remote SUSE Manager server for all repositories, choose this option and provide the *Server URL* (in the form of `http://manager.example.com`).

**Custom**

If you use different sources for your repositories or are using non-standard locations, choose this option and manually provide a location for each repository. This can either be a local directory (`/srv/tftpboot/suse-12.2/x86_64/repos/SLES12-SP2-Pool/`) or a remote location (`http://manager.example.com/ks/dist/child/sles12-sp2-updates-x86_64/sles12-sp2-x86_64/`). Activating *Ask On Error* ensures that you will be informed if a repository is not available during node deployment, otherwise errors will be silently ignored. The *Add Repository* dialog allows adding additional repositories. See *Q:* for instructions.
Tip: Default Locations

If you have made the repositories available in the default locations on the Administration Server (see Table 5.5, “Default Repository Locations on the Administration Server” for a list), choose Custom and leave the Repository URL empty (default). The repositories will automatically be detected.

FIGURE 7.5: YAST CROWBAR SETUP: REPOSITORY SETTINGS

7.5 Custom Network Configuration

To adjust the pre-defined network setup of SUSE OpenStack Cloud beyond the scope of changing IP address assignments (as described in Chapter 7, Crowbar Setup), modify the network barclamp template.

The Crowbar network barclamp provides two functions for the system. The first is a common role to instantiate network interfaces on the Crowbar managed systems. The other function is address pool management. While the addresses can be managed with the YaST Crowbar module, complex network setups require to manually edit the network barclamp template file /etc/crowbar/network.json. This section explains the file in detail. Settings in this file are applied to all nodes in SUSE OpenStack Cloud. (See Section 7.5.11, “Matching Logical and Physical Interface Names with network-json-resolve” to learn how to verify your correct network interface names.)
Warning: No Network Changes After Completing the SUSE OpenStack Cloud Crowbar installation

After you have completed the SUSE OpenStack Cloud Crowbar installation installation, you cannot change the network setup. If you do need to change it, you must completely set up the Administration Server again.

The only exception to this rule is the interface map, which can be changed after setup. See Section 7.5.3, “Interface Map” for details.

7.5.1 Editing network.json

The network.json file is located in /etc/crowbar/. The template has the following general structure:

```
{
  "attributes" : {
    "network" : {
      "mode" : "VALUE",
      "start_up_delay" : VALUE,
      "teaming" : { "mode": VALUE },
      "enable_tx_offloading" : VALUE,
      "enable_rx_offloading" : VALUE,
      "interface_map" : [ ...
        ],
      "conduit_map" : [ ...
        ],
      "networks" : {
        ...
      }
    }
  }
}
```

1 General attributes. Refer to Section 7.5.2, “Global Attributes” for details.

2 Interface map section. Defines the order in which the physical network interfaces are to be used. Refer to Section 7.5.3, “Interface Map” for details.

3 Network conduit section defining the network modes and the network interface usage. Refer to Section 7.5.5, “Network Conduits” for details.
Network definition section. Refer to Section 7.5.7, “Network Definitions” for details.

Note: Order of Elements
The order in which the entries in the network.json file appear may differ from the one listed above. Use your editor's search function to find certain entries.

7.5.2 Global Attributes
The most important options to define in the global attributes section are the default values for the network and bonding modes. The following global attributes exist:

```
{
  "attributes" : {
    "network" : {
      "mode" : "single", ¹
      "start_up_delay" : 30, ²
      "teaming" : { "mode": 5 }, ³
      "enable_tx_offloading" : true, ⁴
      "enable_rx_offloading" : true, ⁴
      "interface_map" : [
        ...
      ],
      "conduit_map" : [
        ...
      ],
      "networks" : {
        ...
      },
    }
  }
}
```

¹ Network mode. Defines the configuration name (or name space) to be used from the conduit_map (see Section 7.5.5, “Network Conduits”). Your choices are single, dual, or team.

² Time (in seconds) the Chef-client waits for the network interfaces to come online before timing out.

³ Default bonding mode. For a list of available modes, see Section 7.3, “Network Mode”.
Turn on/off TX and RX checksum offloading. If set to `false`, disable offloading by running `ethtool -K` and adding the setting to the respective `ifcfg` configuration file. If set to `true`, use the defaults of the network driver. If the network driver supports TX and/or RX checksum offloading and enables it by default, it will be used.

Checksum offloading is set to `true` in `network.json` by default. It is recommended to keep this setting. If you experience problems, such as package losses, try disabling this feature by setting the value to `false`.

---

### Important: Change of the Default Value

Starting with SUSE OpenStack Cloud, the default value for TX and RX checksum offloading changed from `false` to `true`.

To check which defaults a network driver uses, run `ethtool -k`, for example:

```bash
sudo ethtool -k eth0 | grep checksumming
rx-checksumming: on
tx-checksumming: on
```

Note that if the output shows a value marked as `[fixed]`, this value cannot be changed. For more information on TX and RX checksum offloading refer to your hardware vendor's documentation. Detailed technical information can also be obtained from [https://www.kernel.org/doc/Documentation/networking/checksum-offloads.txt](https://www.kernel.org/doc/Documentation/networking/checksum-offloads.txt).

---

### 7.5.3 Interface Map

By default, physical network interfaces are used in the order they appear under `/sys/class/net/`. If you want to apply a different order, you need to create an interface map where you can specify a custom order of the bus IDs. Interface maps are created for specific hardware configurations and are applied to all machines matching this configuration.

```json
{
    "attributes" : {
        "network" : {
            "mode" : "single",
            "start_up_delay" : 30,
            "teaming" : { "mode": 5 },
            "enable_tx_offloading" : true,
            "enable_rx_offloading" : true,
        }
    }
}
```
"interface_map" : [
    {
        "pattern" : "PowerEdge R610" ①,
        "serial_number" : "0x02159F8E" ②,
        "bus_order" : [ ③
            "0000:00/0000:00:01",
            "0000:00/0000:00:03"
        ]
    }
    ...
],
"conduit_map" : [
    ...
],
"networks" : {
    ...
},
}

① Hardware specific identifier. This identifier can be obtained by running the command `dmidecode -s system-product-name` on the machine you want to identify. You can log in to a node during the hardware discovery phase (when booting the SLEHammer image) via the Administration Server.

② Additional hardware specific identifier. This identifier can be used in case two machines have the same value for `pattern`, but different interface maps are needed. Specifying this parameter is optional (it is not included in the default `network.json` file). The serial number of a machine can be obtained by running the command `dmidecode -s system-serial-number` on the machine you want to identify.

③ Bus IDs of the interfaces. The order in which they are listed here defines the order in which Chef addresses the interfaces. The IDs can be obtained by listing the contents of `/sys/class/net/`.

⚠️ **Important: PXE Boot Interface Must be Listed First**
The physical interface used to boot the node via PXE must always be listed first.
Note: Interface Map Changes Allowed After Having Completed the SUSE OpenStack Cloud Crowbar Installation

Contrary to all other sections in network.json, you can change interface maps after completing the SUSE OpenStack Cloud Crowbar installation. However, nodes that are already deployed and affected by these changes must be deployed again. Therefore, we do not recommend making changes to the interface map that affect active nodes.

If you change the interface mappings after completing the SUSE OpenStack Cloud Crowbar installation you must not make your changes by editing network.json. You must rather use the Crowbar Web interface and open Barclamps ▶ Crowbar ▶ Network ▶ Edit. Activate your changes by clicking Apply.

7.5.4 Interface Map Example

EXAMPLE 7.1: CHANGING THE NETWORK INTERFACE ORDER ON A MACHINE WITH FOUR NICS

1. Get the machine identifier by running the following command on the machine to which the map should be applied:

   ~ # dmidecode -s system-product-name
   AS 2003R

   The resulting string needs to be entered on the pattern line of the map. It is interpreted as a Ruby regular expression (see http://www.ruby-doc.org/core-2.0/Regexp.html for a reference). Unless the pattern starts with ^ and ends with $, a substring match is performed against the name returned from the above commands.

2. List the interface devices in /sys/class/net to get the current order and the bus ID of each interface:

   ~ # ls -lG /sys/class/net/ | grep eth
   lrwxrwxrwx 1 0 Jun 19 08:43 eth0 -> ../devices/pci0000:00/0000:00:1c.0/0000:09:00.0/net/eth0
   lrwxrwxrwx 1 0 Jun 19 08:43 eth1 -> ../devices/pci0000:00/0000:00:1c.0/0000:09:00.1/net/eth1
   lrwxrwxrwx 1 0 Jun 19 08:43 eth2 -> ../devices/pci0000:00/0000:00:1c.0/0000:09:00.2/net/eth2
   lrwxrwxrwx 1 0 Jun 19 08:43 eth3 -> ../devices/pci0000:00/0000:00:1c.0/0000:09:00.3/net/eth3
The bus ID is included in the path of the link target—it is the following string: `../../devices/pciBUS ID/net/eth0`

3. Create an interface map with the bus ID listed in the order the interfaces should be used. Keep in mind that the interface from which the node is booted using PXE must be listed first. In the following example the default interface order has been changed to `eth0`, `eth2`, `eth1` and `eth3`.

```json
{
    "attributes": {
        "network": {
            "mode": "single",
            "start_up_delay": 30,
            "teaming": { "mode": 5 },
            "enable_tx_offloading": true,
            "enable_rx_offloading": true,
            "interface_map": [
                {
                    "pattern": "AS 2003R",
                    "bus_order": [
                        "0000:00/0000:00:1c.0/0000:09:00.0",
                        "0000:00/0000:00:1c.0/0000:09:00.2",
                        "0000:00/0000:00:1c.0/0000:09:00.1",
                        "0000:00/0000:00:1c.0/0000:09:00.3"
                    ]
                }
            ],
            "conduit_map": [
                ...
            ],
            "networks": {
                ...
            }
        }
    }
}
```

### 7.5.5 Network Conduits

Network conduits define mappings for logical interfaces—one or more physical interfaces bonded together. Each conduit can be identified by a unique name, the pattern. This pattern is also called “Network Mode” in this document.
Three network modes are available:

**single:** Only use the first interface for all networks. VLANs will be added on top of this single interface.

**dual:** Use the first interface as the admin interface and the second one for all other networks. VLANs will be added on top of the second interface.

**team:** Bond the first two or more interfaces. VLANs will be added on top of the bond.

See Section 2.1.2, "Network Modes" for detailed descriptions. Apart from these modes a fallback mode `"/.*/.*"` is also pre-defined—it is applied in case no other mode matches the one specified in the global attributes section. These modes can be adjusted according to your needs. It is also possible to define a custom mode.

The mode name that is specified with `mode` in the global attributes section is deployed on all nodes in SUSE OpenStack Cloud. It is not possible to use a different mode for a certain node. However, you can define "sub" modes with the same name that only match the following machines:

- Machines with a certain number of physical network interfaces.
- Machines with certain roles (all Compute Nodes for example).

```json
{
  "attributes": {
    "network": {
      "mode": "single",
      "start_up_delay": 30,
      "teaming": { "mode": 5 },
      "enable_tx_offloading": true,
      "enable_rx_offloading": true,
      "interface_map": [
        ...
      ],
      "conduit_map": [
        {
          "pattern": "single/.*/.*",
          "conduit_list": {
            "intf2": {
              "if_list": ["1g1","1g2"],
              "team_mode": 5
            }
          },
          "intf1": {
            "if_list": ["1g1","1g2"],
            "team_mode": 5
          }
        }
      ]
    }
  }
}
```
This line contains the pattern definition for the `conduit_map`. The value for pattern must have the following form:

```
MODE_NAME/NUMBER_OF_NICS/NODE_ROLE
```

Each field in the pattern is interpreted as a Ruby regular expression (see [http://www.ruby-doc.org/core-2.0/Regexp.html](http://www.ruby-doc.org/core-2.0/Regexp.html) for a reference).

**mode_name**

Name of the network mode. This string is used to reference the mode from the general attributes section.

**number_of_nics**

Normally it is not possible to apply different network modes to different roles—you can only specify one mode in the global attributes section. However, it does not make sense to apply a network mode that bonds three interfaces on a machine with only two physical network interfaces. This option enables you to create modes for nodes with a given number of interfaces.

**node_role**

This part of the pattern lets you create matches for a certain node role. This enables you to create network modes for certain roles, for example the Compute Nodes (role: `nova-compute`) or the Swift nodes (role: `swift-storage`). See Example 7.3, “Network Modes for Certain Roles” for the full list of roles.
The logical network interface definition. Each conduit list must contain at least one such definition. This line defines the name of the logical interface. This identifier must be unique and will also be referenced in the network definition section. We recommend sticking with the pre-defined naming scheme: `intf0` for “Interface 0”, `intf1` for “Interface 1”, etc. If you change the name (not recommended), you also need to change all references in the network definition section.

This line maps one or more physical interfaces to the logical interface. Each entry represents a physical interface. If more than one entry exists, the interfaces are bonded—either with the mode defined in the `team_mode` attribute of this conduit section. Or, if that is not present, by the globally defined `teaming` attribute.

The physical interfaces definition needs to fit the following pattern:

```
[Quantifier][Speed][Order]
```

Valid examples are `+1g2`, `10g1` or `?1g2`.

**Quantifier**

Specifying the quantifier is optional. The following values may be entered:

- `+`: at least the speed specified afterwards (specified value or higher)
- `-`: at most the speed specified afterwards (specified value or lower)
- `?`: any speed (speed specified afterwards is ignored)

If no quantifier is specified, the exact speed specified is used.

**Speed**

Specifying the interface speed is mandatory (even if using the `?` quantifier). The following values may be entered:

- `10m`: 10 Mbit
- `100m`: 100 Mbit
- `1g`: 1 Gbit
- `10g`: 10 Gbit
- `20g`: 20 Gbit
- `40g`: 40 Gbit
- `56g`: 56 Gbit
Order

Position in the interface order. Specifying this value is mandatory. The interface order is defined by the order in which the interfaces appear in `/sys/class/net` (default) or, if it exists, by an interface map. The order is also linked to the speed in this context:

- `1g1`: the first 1Gbit interface
- `+1g1`: the first 1Gbit or 10Gbit interface. Crowbar will take the first 1Gbit interface. Only if such an interface does not exist, it will take the first 10Gbit interface available.
- `?1g3`: the third 1Gbit, 10Gbit, 100Mbit or 10Mbit interface. Crowbar will take the third 1Gbit interface. Only if such an interface does not exist, it will take the third 10Gbit interface, then the third 100Mbit or 10Mbit interface.

Note: Ordering Numbers

Ordering numbers start with 1 rather than with 0.

Each interface that supports multiple speeds is referenced by multiple names—one for each speed it supports. A 10Gbit interface is therefore represented by four names: `10gX`, `1gX`, `100mX`, `10mX`, where `X` is the ordering number.

Ordering numbers always start with 1 and are assigned ascending for each speed, for example `1g1`, `1g2`, and `1g3`. Numbering starts with the first physical interface. On systems with network interfaces supporting different maximum speeds, ordering numbers for the individual speeds differ, as the following example shows:

- 100Mbit (first interface): `100m1`, `10m1`
- 1Gbit (second interface): `1g1`, `100m2`, `10m2`
- 10Gbit (third interface): `10g1`, `1g2`, `100m3`, `10m3`

In this example the pattern `?1g3` would match `100m3`, since no third 1Gbit or 10Gbit interface exist.

The bonding mode to be used for this logical interface. Overwrites the default set in the global attributes section for this interface. See [https://www.kernel.org/doc/Documentation/networking/bonding.txt](https://www.kernel.org/doc/Documentation/networking/bonding.txt) for a list of available modes. Specifying this option is optional—if not specified here, the global setting applies.
EXAMPLE 7.2: NETWORK MODES FOR DIFFERENT NIC NUMBERS

The following example defines a team network mode for nodes with 6, 3, and an arbitrary number of network interfaces. Since the first mode that matches is applied, it is important that the specific modes (for 6 and 3 NICs) are listed before the general mode:

```json
{
    "attributes" : {
        "network" : {
            "mode" : "single",
            "start_up_delay" : 30,
            "teaming" : { "mode": 5 },
            "enable_tx_offloading" : true,
            "enable_rx_offloading" : true,
            "interface_map" : [
                 ...
            ],
            "conduit_map" : [
                {
                    "pattern" : "single/6/.*",
                    "conduit_list" : {
                        ...
                    }
                },
                {
                    "pattern" : "single/3/.*",
                    "conduit_list" : {
                        ...
                    }
                },
                {
                    "pattern" : "single/.*/.*",
                    "conduit_list" : {
                        ...
                    }
                }
            ],
            "networks" : {
                ...
            }
        }
    }
}
```
EXAMPLE 7.3: NETWORK MODES FOR CERTAIN ROLES

The following example defines network modes for Compute Nodes with four physical interfaces, the Administration Server (role \texttt{crowbar}), the Control Node, and a general mode applying to all other nodes.

```
{  
  "attributes" : {  
    "network" : {  
      "mode" : "team",  
      "start_up_delay" : 30,  
      "teaming" : { "mode": 5 },  
      "enable_tx_offloading" : true,  
      "enable_rx_offloading" : true,  
      "interface_map" : [  
        ...  
      ],  
      "conduit_map" : [  
        {  
          "pattern" : "team/4/nova-compute",  
          "conduit_list" : {  
            ...  
          }  
        },  
        {  
          "pattern" : "team/.*^crowbar$",  
          "conduit_list" : {  
            ...  
          }  
        },  
        {  
          "pattern" : "team/.*/nova-controller",  
          "conduit_list" : {  
            ...  
          }  
        },  
        {  
          "pattern" : "team/.*/.*",  
          "conduit_list" : {  
            ...  
          }  
        }  
      ],  
      "networks" : {  
        ...  
      },
```
The following values for node_role can be used:

- ceilometer-polling
- ceilometer-server
- ceph-calamari
- ceph-mon
- ceph-osd
- ceph-radosgw
- cinder-controller
- cinder-volume
- crowbar
- database-server
- glance-server
- heat-server
- horizon-server
- keystone-server
- manila-server
- manila-share
- monasca-agent
- monasca-log-agent
- monasca-master
- monasca-server
- neutron-network
- neutron-server
- nova-controller
- nova-compute-
- rabbitmq-server
- trove-server
- swift-dispersion
- swift-proxy
- swift-ring-compute
- swift-storage

The role crowbar refers to the Administration Server.
Warning: The crowbar and Pattern Matching

As explained in Example 7.4, “Network Modes for Certain Machines”, each node has an additional, unique role named `crowbar-FULLY QUALIFIED HOSTNAME`.

All three elements of the value of the pattern line are read as regular expressions. Therefore using the pattern `mode-name/.*crowbar` will match all nodes in your installation. `crowbar` is considered a substring and therefore will also match all strings `crowbar-FULLY QUALIFIED HOSTNAME`. As a consequence, all subsequent map definitions will be ignored. To make sure this does not happen, you must use the proper regular expression `^crowbar$: mode-name/.*$crowbar`.

EXAMPLE 7.4: NETWORK MODES FOR CERTAIN MACHINES

Apart from the roles listed under Example 7.3, “Network Modes for Certain Roles”, each node in SUSE OpenStack Cloud has a unique role, which lets you create modes matching exactly one node. Each node can be addressed by its unique role name in the pattern entry of the conduit_map.

The role name depends on the fully qualified host name (FQHN) of the respective machine. The role is named after the scheme `crowbar-FULLY QUALIFIED HOSTNAME` where colons are replaced with dashes, and periods are replaced with underscores. The FQHN depends on whether the respective node was booted via PXE or not.

To determine the host name of a node, log in to the Crowbar Web interface and got to Nodes > Dashboard. Click the respective node name to get detailed data for the node. The FQHN is listed first under Full Name.

Role Names for Nodes Booted via PXE

The `FULLY QUALIFIED HOSTNAME` for nodes booted via PXE is composed of the following: a prefix 'd', the MAC address of the network interface used to boot the node via PXE, and the domain name as configured on the Administration Server. A machine with the fully qualified host name `d1a-12-05-1e-35-49.cloud.example.com` would get the following role name:

`crowbar-d1a-12-05-1e-35-49_cloud_example_com`
Role Names for the Administration Server and Nodes Added Manually

The fully qualified hostnames of the Administration Server and all nodes added manually (as described in Section 10.3, “Converting Existing SUSE Linux Enterprise Server 12 SP2 Machines Into SUSE OpenStack Cloud Nodes”) are defined by the system administrator. They typically have the form hostname+domain, for example admin.cloud.example.com, which would result in the following role name:

crowbar-admin_cloud_example_com

Network mode definitions for certain machines must be listed first in the conduit map. This prevents other, general rules which would also map from being applied.

```json
{
    "attributes": {
        "network": {
            "mode": "dual",
            "start_up_delay": 30,
            "teaming": { "mode": 5 },
            "enable_tx_offloading": true,
            "enable_rx_offloading": true,
            "interface_map": [
                ...
            ],
            "conduit_map": [
                {
                    "pattern": "dual:/crowbar-d1a-12-05-1e-35-49_cloud_example_com",
                    "conduit_list": {
                        ...
                    }
                },
                ...
            ],
            "networks": {
                ...
            }
        }
    }
}
```
7.5.7 Network Definitions

The network definitions contain IP address assignments, the bridge and VLAN setup, and settings for the router preference. Each network is also assigned to a logical interface defined in the network conduit section. In the following the network definition is explained using the example of the admin network definition:

```json
{
    "attributes": {
        "network": {
            "mode": "single",
            "start_up_delay": 30,
            "teaming": { "mode": 5 },
            "enable_tx_offloading": true,
            "enable_rx_offloading": true,
            "interface_map": [
                ...
            ],
            "conduit_map": [
                ...
            ],
            "networks": {
                "admin": {
                    "conduit": "intf0",
                    "add_bridge": false,
                    "use_vlan": false,
                    "vlan": 100,
                    "router_pref": 10,
                    "subnet": "192.168.124.0",
                    "netmask": "255.255.255.0",
                    "router": "192.168.124.1",
                    "broadcast": "192.168.124.255",
                    "ranges": {
                        "admin": {
                            "start": "192.168.124.10",
                            "end": "192.168.124.11"
                        },
                        "switch": {
                            "start": "192.168.124.241",
                            "end": "192.168.124.250"
                        },
                        "dhcp": {
                            "start": "192.168.124.21",
                            "end": "192.168.124.80"
                        },
                        "host": {
```
Logical interface assignment. The interface must be defined in the network conduit section and must be part of the active network mode.

2 Bridge setup. Do not touch. Should be `false` for all networks.

3 Create a VLAN for this network. Changing this setting is not recommended.

4 ID of the VLAN. Change this to the VLAN ID you intend to use for the specific network, if required. This setting can also be changed using the YaST Crowbar interface. The VLAN ID for the `nova-floatig` network must always match the ID for the `public` network.

5 Router preference, used to set the default route. On nodes hosting multiple networks the router with the lowest `router_pref` becomes the default gateway. Changing this setting is not recommended.

6 Network address assignments. These values can also be changed by using the YaST Crowbar interface.

7 Openvswitch virtual switch setup. This attribute is maintained by Crowbar on a per-node level and should not be changed manually.

8 Name of the openvswitch virtual switch. This attribute is maintained by Crowbar on a per-node level and should not be changed manually.

**Important: VLAN Settings**

As of SUSE OpenStack Cloud 7, using a VLAN for the admin network is only supported on a native/untagged VLAN. If you need VLAN support for the admin network, it must be handled at switch level.
When deploying Compute Nodes with Microsoft Hyper-V or Windows Server, you must not use opensvswitch with gre. Instead, use opensvswitch with VLAN (recommended), or linuxbridge as a plugin for Neutron.

When changing the network configuration with YaST or by editing /etc/crowbar/network.json, you can define VLAN settings for each network. For the networks nova-fixed and nova-floating, however, special rules apply:

**nova-fixed**: The USE VLAN setting will be ignored. However, VLANs will automatically be used if deploying Neutron with VLAN support (using the plugins linuxbridge, opensvswitch plus VLAN, or cisco plus VLAN). In this case, you need to specify a correct VLAN ID for this network.

**nova-floating**: When using a VLAN for nova-floating (which is the default), the USE VLAN and VLAN ID settings for nova-floating and public default to the same.

You have the option of separating public and floating networks with a custom configuration. Configure your own separate floating network (not as a subnet of the public network), and give the floating network its own router. For example, define nova-floating as part of an external network with a custom bridge-name. When you are using different networks and OpenVSwitch is configured, the pre-defined bridge-name won't work.

### 7.5.8 Providing Access to External Networks

By default, external networks cannot be reached from nodes in the SUSE OpenStack Cloud. To access external services such as a SUSE Manager server, an SMT server, or a SAN, you need to make the external network(s) known to SUSE OpenStack Cloud. Do so by adding a network definition for each external network to /etc/crowbar/network.json. Refer to Section 7.5, “Custom Network Configuration” for setup instructions.

**EXAMPLE 7.5: EXAMPLE NETWORK DEFINITION FOR THE EXTERNAL NETWORK 192.168.150.0/16**

```json
"external" : {
  "add_bridge" : false,
  "vlan" : XXX,
  "ranges" : {
    "host" : {
      "start" : "192.168.150.1",
      "end" : "192.168.150.254"
    }
  }
}```
Replace the value `XXX` for the VLAN by a value not used within the SUSE OpenStack Cloud network and not used by Neutron. By default, the following VLANs are already used:

**TABLE 7.3: VLANS USED BY THE SUSE OPENSTACK CLOUD DEFAULT NETWORK SETUP**

<table>
<thead>
<tr>
<th>VLAN ID</th>
<th>Used by</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>BMC VLAN (bmc_vlan)</td>
</tr>
<tr>
<td>200</td>
<td>Storage Network</td>
</tr>
<tr>
<td>300</td>
<td>Public Network (nova-float, public)</td>
</tr>
<tr>
<td>400</td>
<td>Software-defined network (os_sdn)</td>
</tr>
<tr>
<td>500</td>
<td>Private Network (nova-fixed)</td>
</tr>
<tr>
<td>501 - 2500</td>
<td>Neutron (value of nova-fixed plus 2000)</td>
</tr>
</tbody>
</table>

### 7.5.9 Split Public and Floating Networks on Different VLANs

For custom setups, the public and floating networks can be separated. Configure your own separate floating network (not as a subnet of the public network), and give the floating network its own router. For example, define `nova-floating` as part of an external network with a custom `bridge-name`. When you are using different networks and OpenVSwitch is configured, the pre-defined `bridge-name` won't work.
7.5.10 Adjusting the Maximum Transmission Unit for the Admin and Storage Network

If you need to adjust the Maximum Transmission Unit (MTU) for the Admin and/or Storage Network, adjust `/etc/crowbar/network.json` as shown below. You can also enable jumbo frames this way by setting the MTU to 9000. The following example enables jumbo frames for both, the storage and the admin network by setting "mtu": 9000.

```
"admin": {
    "add_bridge": false,
    "broadcast": "192.168.124.255",
    "conduit": "intf0",
    "mtu": 9000,
    "netmask": "255.255.255.0",
    "ranges": {
        "admin": {
            "end": "192.168.124.11",
            "start": "192.168.124.10"
        },
        "dhcp": {
            "end": "192.168.124.80",
            "start": "192.168.124.21"
        },
        "host": {
            "end": "192.168.124.160",
            "start": "192.168.124.81"
        },
        "switch": {
            "end": "192.168.124.250",
            "start": "192.168.124.241"
        }
    },
    "router": "192.168.124.1",
    "router_pref": 10,
    "subnet": "192.168.124.0",
    "use_vlan": false,
    "vlan": 100
},
"storage": {
    "add_bridge": false,
    "broadcast": "192.168.125.255",
    "conduit": "intf1",
    "mtu": 9000,
    "netmask": "255.255.255.0",
    "ranges": {
        "host": {
```

```
Warning: No Network Changes After Completing the SUSE OpenStack Cloud Crowbar installation

After you have completed the SUSE OpenStack Cloud Crowbar installation, you cannot change the network setup, and you cannot change the MTU size.

7.5.11 Matching Logical and Physical Interface Names with network-json-resolve

SUSE OpenStack Cloud includes a new script, network-json-resolve, which matches the physical and logical names of network interfaces, and prints them to stdout. Use this to verify that you are using the correct interface names in network.json. The following command prints a help menu:

```
sudo ./network-json-resolve -h
```

network-json-resolve reads your deployed network.json file. To use a different network.json file, specify its full path with the --network-json option. The following example shows how to use a different network.json file, and prints the interface mappings of a single node:

```
sudo ./network-json-resolve --network-json /opt/configs/network.json aliases compute1
eth0: 0g1, 1g1
eth1: 0g1, 1g1
```

You may query the mappings of a specific network interface:

```
sudo ./network-json-resolve aliases compute1 eth0
eth0: 0g1, 1g1
```
Print the bus ID order on a node. This returns `no bus order defined for node` if you did not configure any bus ID mappings:

```
sudo ./network-json-resolve bus_order compute1
```

Print the defined conduit map for the node:

```
sudo ./network-json-resolve conduit_map compute1
bastion: ?1g1
intf0: ?1g1
intf1: ?1g1
intf2: ?1g1
```

Resolve conduits to the standard interface names:

```
sudo ./network-json-resolve conduits compute1
bastion: 
intf0: eth0
intf1: eth0
intf2: eth0
```

Resolve the configured networks on a node to the standard interface names:

```
sudo ./network-json-resolve networks compute1
bastion: 
bmc_vlan:  eth0
nova_fixed: eth0
nova_floating: eth0
os_sdn:  eth0
public:  eth0
storage:  eth0
```

Resolve the specified network to the standard interface name(s):

```
sudo ./network-json-resolve networks compute1 public
public:  eth0
```

Resolve a `network.json`-style interface to its standard interface name(s):

```
sudo ./network-json-resolve resolve compute1 1g1
eth0
```
7.6 Setting Up Multiple External Networks

This section shows you how to create external networks on SUSE OpenStack Cloud by modifying the Neutron barclamp.

7.6.1 Configure the Neutron Barclamp

1. Add the following lines to `/etc/crowbar/network.json` to set up an external network, using the name of your new network, VLAN ID, and network addresses.

```
  "public2": {
    "conduit": "intf1",
    "vlan": 600,
    "use_vlan": true,
    "add_bridge": false,
    "subnet": "192.168.135.128",
    "netmask": "255.255.255.128",
    "broadcast": "192.168.135.255",
    "ranges": {
      "host": {  "start": "192.168.135.129",
                  "end": "192.168.135.254"  }
    }
  },
```

2. Install the modified Neutron barclamp and modify `additional_external_networks` with the name of your new external network.

7.6.2 Configure the New External Network

The following steps add the network settings, including IP address pools, gateway, routing, and virtual switches to your new network.

1. Set up interface mapping using either Open vSwitch (OVS) or Linuxbridge. For Open vSwitch run the following command:

```
sudo neutron net-create public2: --provider:network_type flat \  --provider:physical_network public2: --router:external=True
```
For Linuxbridge run the following command:

```
sudo neutron net-create --router:external True --provider:physical_network physnet1 \  
--provider:network_type vlan --provider:segmentation_id 600
```

2. If a different network is used then Crowbar will create a new interface mapping. Then you can use a flat network:

```
sudo neutron net-create public2 --provider:network_type flat \  
--provider:physical_network public2 --router:external=True
```

3. Create a subnet:

```
sudo neutron subnet-create --name public2 --allocation-pool \  
start=192.168.135.2,end=192.168.135.127 --gateway 192.168.135.1 public2 \  
192.168.135.0/24 --enable_dhcp False
```

4. Create a router, `router2`:

```
sudo neutron router-create router2
```

5. Connect `router2` to the new external network:

```
sudo neutron router-gateway-set router2 public2
```

6. Create a new private network and connect it to `router2`

```
sudo neutron net-create priv-net
sudo neutron subnet-create priv-net --gateway 10.10.10.1 10.10.10.0/24 \  
--name priv-net-sub
sudo neutron router-interface-add router2 priv-net-sub
```

7. Boot a VM on priv-net-sub and set a security group that allows SSH.

8. Assign a floating IP address to the VM, this time from network `public2`.

9. From the node verify that SSH is working by opening an SSH session to the VM.
7.6.3 How the Network Bridges are Created

For OVS, a new bridge will be created by Crowbar, in this case `br-public2`. In the bridge mapping the new network will be assigned to the bridge. The interface specified in `/etc/crowbar/network.json` (in this case eth0.600) will be plugged into `br-public2`. The new public network can be created in Neutron using the new public network name as `provider:physical_network`.

For Linuxbridge, Crowbar will check the interface associated with `public2`. If this is the same as physnet1 no interface mapping will be created. The new public network can be created in Neutron using physnet1 as physical network and specifying the correct VLAN ID:

```
sudo neutron net-create public2 --router:external True --provider:physical_network physnet1 --provider:network_type vlan --provider:segmentation_id 600
```

A bridge named `brq-NET_ID` will be created and the interface specified in `/etc/crowbar/network.json` will be plugged into it. If a new interface is associated in `/etc/crowbar/network.json` with `public2` then Crowbar will add a new interface mapping and the second public network can be created using `public2` as the physical network:

```
sudo neutron net-create public2 --provider:network_type flat --provider:physical_network public2 --router:external=True
```

7.7 Crowbar Batch Command

This is the documentation for the `crowbar batch` subcommand. `crowbar batch` provides a quick way of creating, updating, and applying Crowbar proposals. It can be used to:

- Accurately capture the configuration of an existing Crowbar environment.
- Drive Crowbar to build a complete new environment from scratch.
- Capture one SUSE OpenStack Cloud environment and then reproduce it on another set of hardware (provided hardware and network configuration match to an appropriate extent).
- Automatically update existing proposals.
As the name suggests, **crowbar batch** is intended to be run in “batch mode” that is mostly unattended. It has two modes of operation:

**crowbar batch export**

Exports a YAML file which describes existing proposals and how their parameters deviate from the default proposal values for that barclamp.

**crowbar batch build**

Imports a YAML file in the same format as above. Uses it to build new proposals if they do not yet exist. Updates the existing proposals so that their parameters match those given in the YAML file.

### 7.7.1 YAML file format

Here is an example YAML file. At the top-level there is a proposals array, each entry of which is a hash representing a proposal:

```yaml
proposals:
- barclamp: provisioner
  # Proposal name defaults to 'default'.
  attributes:
    shell_prompt: USER@ALIAS:CWD SUFFIX
- barclamp: database
  # Default attributes are good enough, so we just need to assign
  # nodes to roles:
  deployment:
    elements:
      database-server:
        - @@controller1@@
- barclamp: rabbitmq
  deployment:
    elements:
      rabbitmq-server:
        - @@controller1@@
```

**Note: Reserved Indicators in YAML**

Note that the characters `@` and `\` are reserved indicators in YAML. They can appear anywhere in a string except at the beginning. Therefore a string such as `@@controller1@@` needs to be quoted using double quotes.
7.7.2 Top-level proposal attributes

barclamp

Name of the barclamp for this proposal (required).

name

Name of this proposal (optional; default is default). In build mode, if the proposal does not already exist, it will be created.

attributes

An optional nested hash containing any attributes for this proposal which deviate from the defaults for the barclamp.

In export mode, any attributes set to the default values are excluded to keep the YAML as short and readable as possible.

In build mode, these attributes are deep-merged with the current values for the proposal. If the proposal did not already exist, batch build will create it first. The attributes are merged with the default values for the barclamp's proposal.

wipe_attributes

An optional array of paths to nested attributes which should be removed from the proposal. Each path is a period-delimited sequence of attributes; for example pacemaker.stonith.sbd.nodes would remove all SBD nodes from the proposal if it already exists. If a path segment contains a period, it should be escaped with a backslash, for example segment-one.segment\two.segment_three.

This removal occurs before the deep merge described above. For example, think of a YAML file which includes a Pacemaker barclamp proposal where the wipe_attributes entry contains pacemaker.stonith.sbd.nodes. A batch build with this YAML file ensures that only SBD nodes listed in the attributes sibling hash are used at the end of the run. In contrast, without the wipe_attributes entry, the given SBD nodes would be appended to any SBD nodes already defined in the proposal.

deployment

A nested hash defining how and where this proposal should be deployed.

In build mode, this hash is deep-merged in the same way as the attributes hash, except that the array of elements for each Chef role is reset to the empty list before the deep merge. This behavior may change in the future.
7.7.3 Node Alias Substitutions

A string like @@node@@ (where node is a node alias) will be substituted for the name of that node, no matter where the string appears in the YAML file. For example, if controller1 is a Crowbar alias for node d52-54-02-77-77-02.mycloud.com, then @@controller1@@ will be substituted for that host name. This allows YAML files to be reused across environments.

7.7.4 Options

In addition to the standard options available to every crowbar subcommand (run crowbar batch --help for a full list), there are some extra options specifically for crowbar batch:

--include <barclamp[.proposal]>

Only include the barclamp / proposals given.
This option can be repeated multiple times. The inclusion value can either be the name of a barclamp (for example, pacemaker) or a specifically named proposal within the barclamp (for example, pacemaker.network_cluster).
If it is specified, then only the barclamps / proposals specified are included in the build or export operation, and all others are ignored.

--exclude <barclamp[.proposal]>

This option can be repeated multiple times. The exclusion value is the same format as for --include. The barclamps / proposals specified are excluded from the build or export operation.

--timeout <seconds>

Change the timeout for Crowbar API calls.
As Chef's run lists grow, some of the later OpenStack barclamp proposals (for example Nova, Horizon, or Heat) can take over 5 or even 10 minutes to apply. Therefore you may need to increase this timeout to 900 seconds in some circumstances.
8 Starting the SUSE OpenStack Cloud Crowbar installation

The last step in configuring the Administration Server is starting Crowbar. Before starting the SUSE OpenStack Cloud Crowbar installation to finish the configuration of the Administration Server, make sure to double-check the following items.

**FINAL CHECK POINTS**

- Make sure the network configuration is correct. Run `YaST › Crowbar` to review/change the configuration. See Chapter 7, Crowbar Setup for further instructions.

![Important: An HA Setup Requires Team Network Mode](image)

If you are planning to make SUSE OpenStack Cloud highly available, whether upon the initial setup or later, set up the network in the team mode. Such a setup requires at least two network cards for each node.

- Make sure `hostname -f` returns a fully qualified host name. See Chapter 6, Service Configuration: Administration Server Network Configuration for further instructions.

- Make sure all update and product repositories are available. See Chapter 5, Software Repository Setup for further instructions.

- Make sure the operating system and SUSE OpenStack Cloud are up-to-date and have the latest patches installed. Run `zypper patch` to install them.

- To use the Web interface for the SUSE OpenStack Cloud Crowbar installation you need network access to the Administration Server via a second network interface. As the network will be reconfigured during the SUSE OpenStack Cloud Crowbar installation, make sure to either have a bastion network or an external gateway configured. (For details on bastion networks, see Section 7.3.1, “Setting Up a Bastion Network”.)

Now everything is in place to finally set up Crowbar and install the Administration Server. Crowbar requires a PostgreSQL database—you can either create one on the Administration Server or use an existing PostgreSQL database on a remote server.
PROCEDURE 8.1: SETTING UP CROWBAR WITH A LOCAL DATABASE

1. Start Crowbar:

   ```
   sudo systemctl start crowbar-init
   ```

2. Create a new database on the Administration Server. By default the credentials crowbar/crowbar are used:

   ```
   crowbarctl database create
   ```

To use a different user name and password, run the following command instead:

   ```
   crowbarctl database create \
   --db_username=USERNAME --db_password=PASSWORD
   ```

Run **crowbarctl database help create** for help and more information.

PROCEDURE 8.2: SETTING UP CROWBAR WITH A REMOTE POSTGRESQL DATABASE

1. Start Crowbar:

   ```
   sudo systemctl start crowbar-init
   ```

2. Make sure a user account that can be used for the Crowbar database exists on the remote PostgreSQL database. If not, create such an account.

3. Test the database connection using the credentials from the previous step:

   ```
   crowbarctl database test --db-username=USERNAME \ 
   --db-password=PASSWORD --database=DBNAME \ 
   --host=IP_or_FQDN --port=PORT
   ```

   You need to be able to successfully connect to the database before you can proceed. Run **crowbarctl database help test** for help and more information.

4. To connect to the database, use the following command:

   ```
   crowbarctl database connect --db-username=USERNAME \ 
   --db-password=PASSWORD --database=DBNAME \ 
   --host=IP_or_FQDN --port=PORT
   ```

Run **crowbarctl database help connect** for help and more information.
After the database is successfully created and you can connect to it, access the Web interface from a Web browser, using the following address:

http://ADDRESS

Replace ADDRESS either with the IP address of the second network interface or its associated host name. Logging in to the Web interface requires the credentials you configured with YaST Crowbar (see Section 7.1, “User Settings”). If you have not changed the defaults, user name and password are both crowbar. Refer to Chapter 9, The Crowbar Web Interface for details.

The Web interface shows the SUSE OpenStack Cloud installation wizard. Click Start Installation to begin. The installation progress is shown in the Web interface:

---

FIGURE 8.1: THE SUSE OPENSTACK CLOUD CROWBAR INSTALLATION WEB INTERFACE
If the installation has successfully finished, you will be redirected to the Crowbar Dashboard:

FIGURE 8.2: CROWBAR WEB INTERFACE: THE DASHBOARD

From here you can start allocating nodes and then deploy the OpenStack services. Refer to *Part III, “Setting Up OpenStack Nodes and Services”* for more information.
III Setting Up OpenStack Nodes and Services

9 The Crowbar Web Interface 109
10 Installing the OpenStack Nodes 120
11 Deploying the OpenStack Services 144
12 Limiting Users' Access Rights 247
13 Configuration Files for OpenStack Services 252
The Crowbar Web Interface

The Crowbar Web interface runs on the Administration Server. It provides an overview of the most important deployment details in your cloud. This includes a view of the nodes and which roles are deployed on which nodes, and the barclamp proposals that can be edited and deployed. In addition, the Crowbar Web interface shows details about the networks and switches in your cloud. It also provides graphical access to tools for managing your repositories, backing up or restoring the Administration Server, exporting the Chef configuration, or generating a supportconfig TAR archive with the most important log files.

Tip: Crowbar API Documentation

You can access the Crowbar API documentation from the following static page: http://CROWBAR_SERVER/apidoc.

The documentation contains information about the crowbar API endpoints and its parameters, including response examples, possible errors (and their HTTP response codes), parameter validations, and required headers.

9.1 Logging In

The Crowbar Web interface uses the HTTP protocol and port 80.

PROCEDURE 9.1: LOGGING IN TO THE CROWBAR WEB INTERFACE

1. On any machine, start a Web browser and make sure that JavaScript and cookies are enabled.

2. As URL, enter the IP address of the Administration Server, for example:

   http://192.168.124.10/

3. Log in as user crowbar. If you have not changed the password, it is crowbar by default.

PROCEDURE 9.2: CHANGING THE PASSWORD FOR THE CROWBAR WEB INTERFACE

1. After logging in to the Crowbar Web interface, select Barclamps > Crowbar.
2. Select the **Crowbar** barclamp entry and *Edit* the proposal.

3. In the *Attributes* section, click *Raw* to edit the configuration file.

4. Search for the following entry:

   ```json
   "crowbar": {
     "password": "crowbar"
   }
   ```

5. Change the password.

6. Confirm your change by clicking *Save* and *Apply*.

### 9.2 Overview: Main Elements

After logging in to Crowbar, you will see a navigation bar at the top-level row. Its menus and the respective views are described in the following sections.

---

**FIGURE 9.1: CROWBAR UI—DASHBOARD (MAIN SCREEN)**

---
9.2.1 Nodes

Dashboard

This is the default view after logging in to the Crowbar Web interface. The Dashboard shows the groups (which you can create to arrange nodes according to their purpose), which nodes belong to each group, and which state the nodes and groups are in. In addition, the total number of nodes is displayed in the top-level row.

The color of the dot in front of each node or group indicates the status. If the dot for a group shows more than one color, hover the mouse pointer over the dot to view the total number of nodes and the statuses they are in.

- Gray means the node is being discovered by the Administration Server, or that there is no up-to-date information about a deployed node. If the status is shown for a node longer than expected, check if the chef-client is still running on the node.

- Yellow means the node has been successfully discovered. As long as the node has not been allocated the dot will flash. A solid (non-flashing) yellow dot indicates that the node has been allocated, but installation has not yet started.

- Flashing from yellow to green means the node has been allocated and is currently being installed.

- Solid green means the node is in status Ready.

- Red means the node is in status Problem.

During the initial state of the setup, the Dashboard only shows one group called sw_unknown into which the Administration Server is automatically sorted. Initially, all nodes (except the Administration Server) are listed with their MAC address as a name. However, we recommend creating an alias for each node. This makes it easier to identify the node in the admin network and on the Dashboard. For details on how to create groups, how to assign nodes to a group, and how to create node aliases, see Section 10.2, "Node Installation".

Bulk Edit

This screen allows you to edit multiple nodes at once instead of editing them individually. It lists all nodes, including Name (in form of the MAC address), Hardware configuration, Alias (used within the admin network), Public Name (name used outside of the SUSE OpenStack
Cloud network), Group, Intended Role, Platform (the operating system that is going to be installed on the node), License (if available), and allocation status. You can toggle the list view between Show unallocated or Show all nodes.

For details on how to fill in the data for all nodes and how to start the installation process, see Section 10.2, "Node Installation".

**HA Clusters**

This menu entry only appears if your cloud contains a High Availability setup. The overview shows all clusters in your setup, including the Nodes that are members of the respective cluster and the Roles assigned to the cluster. It also shows if a cluster contains Remote Nodes and which roles are assigned to the remote nodes.

**Active Roles**

This overview shows which roles have been deployed on which node(s). The roles are grouped according to the service to which they belong. You cannot edit anything here. To change role deployment, you need to edit and redeploy the appropriate barclamps as described in Chapter 11, Deploying the OpenStack Services.

### 9.2.2 Barclamps

**All Barclamps**

This screen shows a list of all available barclamp proposals, including their Status, Name, and a short Description. From here, you can Edit individual barclamp proposals as described in Section 9.3, "Deploying Barclamp Proposals".

**Crowbar**

This screen only shows the barclamps that are included with the core Crowbar framework. They contain general recipes for setting up and configuring all nodes. From here, you can Edit individual barclamp proposals.

**OpenStack**

This screen only shows the barclamps that are dedicated to OpenStack service deployment and configuration. From here, you can Edit individual barclamp proposals.
Deployment Queue

If barclamps are applied to one or more nodes that are not yet available for deployment (for example, because they are rebooting or have not been fully installed yet), the proposals will be put in a queue. This screen shows the proposals that are Currently deploying or Waiting in queue.

9.2.3 Utilities

Exported Items

The Exported Files screen allows you to export the Chef configuration and the supportconfig TAR archive. The supportconfig archive contains system information such as the current kernel version being used, the hardware, RPM database, partitions, and the most important log files for analysis of any problems. To access the export options, click New Export. After the export has been successfully finished, the Exported Files screen will show any files that are available for download.

Repositories

This screen shows an overview of the mandatory, recommended, and optional repositories for all architectures of SUSE OpenStack Cloud. On each reload of the screen the Crowbar Web interface checks the availability and status of the repositories. If a mandatory repository is not present, it is marked red in the screen. Any repositories marked green are usable and available to each node in the cloud. Usually, the available repositories are also shown as Active in the rightmost column. This means that the managed nodes will automatically be configured to use this repository. If you disable the Active check box for a repository, managed nodes will not use that repository.

You cannot edit any repositories in this screen. If you need additional, third-party repositories, or want to modify the repository metadata, edit /etc/crowbar/repos.yml. Find an example of a repository definition below:

```yaml
suse-12.2:
  x86_64:
    Custom-Repo-12.2:
      url: 'http://example.com/12-SP2:/x86_64/custom-repo/
      ask_on_error: true # sets the ask_on_error flag in
        # the autoyast profile for that repo
      priority: 99 # sets the repo priority for zypper
```
Alternatively, use the YaST Crowbar module to add or edit repositories as described in Section 7.4, “Repositories”.

**Swift Dashboard**

This screen allows you to run `swift-dispersion-report` on the node or nodes to which it has been deployed. Use this tool to measure the overall health of the swift cluster. For details, see [http://docs.openstack.org/liberty/config-reference/content/object-storage-dispersion.html](http://docs.openstack.org/liberty/config-reference/content/object-storage-dispersion.html).

**Backup & Restore**

This screen is for creating and downloading a backup of the Administration Server. You can also restore from a backup or upload a backup image from your local file system. For details, see Section 15.7, “Backing Up and Restoring the Administration Server”.

**Cisco UCS**

SUSE OpenStack Cloud can communicate with a Cisco UCS Manager instance via its XML-based API server to perform the following functions:

- Instantiate UCS service profiles for Compute Nodes and Storage Nodes from predefined UCS service profile templates.
- Reboot, start, and stop nodes.

The following prerequisites need to be fulfilled on the Cisco UCS side:

- Templates for Compute Nodes and Storage Nodes need to be created. These service profile templates will be used for preparing systems as SUSE OpenStack Cloud nodes. Minimum requirements are a processor supporting AMD-V or Intel-VT, 8 GB RAM, one network interface and at least 20 GB of storage (more for Storage Nodes). The templates must be named `suse-cloud-compute` and `suse-cloud-storage`.
- A user account with administrative permissions needs to be created for communicating with SUSE OpenStack Cloud. The account needs to have access to the service profile templates listed above. It also needs permission to create service profiles and associate them with physical hardware.

To initially connect to the Cisco UCS Manager, provide the login credentials of the user account mentioned above. The API URL has the form `http://UCSMANAGERHOST/nuova`. Click Login to connect. When connected, you will see a list of servers and associated actions. Applying an action with the Update button can take up to several minutes.
9.2.4 Help

From this screen you can access HTML and PDF versions of the SUSE OpenStack Cloud manuals that are installed on the Administration Server.

9.3 Deploying Barclamp Proposals

Barclamps are a set of recipes, templates, and installation instructions. They are used to automatically install OpenStack components on the nodes. Each barclamp is configured via a so-called proposal. A proposal contains the configuration of the service(s) associated with the barclamp and a list of machines onto which to deploy the barclamp.

Most barclamps consist of two sections:

Attributes

For changing the barclamp's configuration, either by editing the respective Web forms (Custom view) or by switching to the Raw view, which exposes all configuration options for the barclamp. In the Raw view, you directly edit the configuration file.

⚠️ Important: Saving Your Changes

Before you switch to Raw view or back again to Custom view, Save your changes. Otherwise they will be lost.

Deployment

Lets you choose onto which nodes to deploy the barclamp. On the left-hand side, you see a list of Available Nodes. The right-hand side shows a list of roles that belong to the barclamp. Assign the nodes to the roles that should be deployed on that node. Some barclamps contain roles that can also be deployed to a cluster. If you have deployed the Pacemaker barclamp, the Deployment section additionally lists Available Clusters and Available Clusters with Remote Nodes in this case. The latter are clusters that contain both “normal” nodes and Pacemaker remote nodes. See Section 2.6.3, “High Availability of the Compute Node(s)” for the basic details.
Important: Clusters with Remote Nodes

- Clusters (or clusters with remote nodes) cannot be assigned to roles that need to be deployed on individual nodes. If you try to do so, the Crowbar Web interface shows an error message.

- If you assign a cluster with remote nodes to a role that can only be applied to “normal” (Corosync) nodes, the role will only be applied to the Corosync nodes of that cluster. The role will not be applied to the remote nodes of the same cluster.

9.3.1 Creating, Editing and Deploying Barclamp Proposals

The following procedure shows how to generally edit, create and deploy barclamp proposals. For the description and deployment of the individual barclamps, see Chapter 11, Deploying the OpenStack Services.

1. Log in to the Crowbar Web interface.

2. Click Barclamps and select All Barclamps. Alternatively, filter for categories by selecting either Crowbar or OpenStack.

3. To create a new proposal or edit an existing one, click Create or Edit next to the appropriate barclamp.

4. Change the configuration in the Attributes section:
   
   a. Change the available options via the Web form.

   b. To edit the configuration file directly, first save changes made in the Web form. Click Raw to edit the configuration in the editor view.

   c. After you have finished, Save your changes. (They are not applied yet).

5. Assign nodes to a role in the Deployment section of the barclamp. By default, one or more nodes are automatically pre-selected for available roles.

   a. If this pre-selection does not meet your requirements, click the Remove icon next to the role to remove the assignment.
b. To assign a node or cluster of your choice, select the item you want from the list of nodes or clusters on the left-hand side, then drag and drop the item onto the desired role name on the right.

Note

Do not drop a node or cluster onto the text box—this is used to filter the list of available nodes or clusters!

c. To save your changes without deploying them yet, click Save.

6. Deploy the proposal by clicking Apply.

Warning: Wait Until a Proposal Has Been Deployed

If you deploy a proposal onto a node where a previous one is still active, the new proposal will overwrite the old one.

Deploying a proposal might take some time (up to several minutes). Always wait until you see the message “Successfully applied the proposal” before proceeding to the next proposal.

A proposal that has not been deployed yet can be deleted in the Edit Proposal view by clicking Delete. To delete a proposal that has already been deployed, see Section 9.3.3, “Deleting a Proposal That Already Has Been Deployed”.

9.3.2 Barclamp Deployment Failure

Warning: Deployment Failure

A deployment failure of a barclamp may leave your node in an inconsistent state. If deployment of a barclamp fails:

1. Fix the reason that has caused the failure.

2. Re-deploy the barclamp.
For help, see the respective troubleshooting section at Q & A 17.1.2, “OpenStack Node Deployment”.

9.3.3 Deleting a Proposal That Already Has Been Deployed

To delete a proposal that has already been deployed, you first need to Deactivate it.

PROCEDURE 9.3: DEACTIVATING AND DELETING A PROPOSAL

1. Log in to the Crowbar Web interface.
2. Click Barclamps > All Barclamps.
3. Click Edit to open the editing view.
4. Click Deactivate and confirm your choice in the following pop-up.
   Deactivating a proposal removes the chef role from the nodes, so the routine that installed and set up the services is not executed anymore.
5. Click Delete to confirm your choice in the following pop-up.
   This removes the barclamp configuration data from the server.

However, deactivating and deleting a barclamp that already had been deployed does not remove packages installed when the barclamp was deployed. Nor does it stop any services that were started during the barclamp deployment. On the affected node, proceed as follows to undo the deployment:

1. Stop the respective services:

   ```
   root # systemctl stop service
   ```

2. Disable the respective services:

   ```
   root # systemctl disable service
   ```

Uninstalling the packages should not be necessary.
9.3.4 Queuing/Dequeueing Proposals

When a proposal is applied to one or more nodes that are not yet available for deployment (for example, because they are rebooting or have not been yet fully installed), the proposal will be put in a queue. A message like

```
Successfully queued the proposal until the following become ready: d52-54-00-6c-25-44
```

will be shown when having applied the proposal. A new button *Dequeue* will also become available. Use it to cancel the deployment of the proposal by removing it from the queue.
10 Installing the OpenStack Nodes

The OpenStack nodes represent the actual cloud infrastructure. Node installation and service deployment is done automatically from the Administration Server. Before deploying the OpenStack services, SUSE Linux Enterprise Server 12 SP2 will be installed on all Control Nodes and Storage Nodes.

To prepare the installation, each node needs to be booted using PXE, which is provided by the tftp server from the Administration Server. Afterward you can allocate the nodes and trigger the operating system installation.

10.1 Preparations

Meaningful Node Names

Make a note of the MAC address and the purpose of each node (for example, controller, block storage, object storage, compute). This will make deploying the OpenStack components a lot easier and less error-prone. It also enables you to assign meaningful names (aliases) to the nodes, which are otherwise listed with the MAC address by default.

BIOS Boot Settings

Make sure booting using PXE (booting from the network) is enabled and configured as the primary boot-option for each node. The nodes will boot twice from the network during the allocation and installation phase. Booting from the first hard disk needs to be configured as the second boot option.

Custom Node Configuration

All nodes are installed using AutoYaST with the same configuration located at /opt/dell/chef/cookbooks/provisioner/templates/default/autoyast.xml.erb. If this configuration does not match your needs (for example if you need special third party drivers) you need to make adjustments to this file. See the AutoYaST manual (http://www.suse.com/documentation/sles-12/book_autoyast/data/book_autoyast.html) for details. If you change the AutoYaST configuration file, you need to re-upload it to Chef using the following command:

```
knife cookbook upload -o /opt/dell/chef/cookbooks/ provisioner
```
Direct root Login

By default, the root account on the nodes has no password assigned, so a direct root login is not possible. Logging in on the nodes as root is only possible via SSH public keys (for example, from the Administration Server).

If you want to allow direct root login, you can set a password via the Crowbar Provisioner barclamp before deploying the nodes. That password will be used for the root account on all OpenStack nodes. Using this method after the nodes are deployed is not possible. In that case you would need to log in to each node via SSH from the Administration Server and change the password manually with passwd.

SETTING A root PASSWORD FOR THE OPENSTACK NODES

1. Create an md5-hashed root-password, for example by using openssl passwd -1.
2. Open a browser and point it to the Crowbar Web interface on the Administration Server, for example http://192.168.124.10. Log in as user crowbar. The password is crowbar by default, if you have not changed it during the installation.
3. Open the barclamp menu by clicking Barclamps › Crowbar. Click the Provisioner barclamp entry and Edit the Default proposal.
4. Click Raw in the Attributes section to edit the configuration file.
5. Add the following line to the end of the file before the last closing curly bracket:

   ```json
   , "root_password_hash": "HASHED_PASSWORD"
   ```

   replacing "HASHED_PASSWORD" with the password you generated in the first step.
6. Click Apply.

10.2 Node Installation

To install a node, you need to boot it first using PXE. It will be booted with an image that enables the Administration Server to discover the node and make it available for installation. When you have allocated the node, it will boot using PXE again and the automatic installation will start.

1. Boot all nodes that you want to deploy using PXE. The nodes will boot into the SLESHammer image, which performs the initial hardware discovery.
Important: Limit the Number of Concurrent Boots using PXE

Booting many nodes at the same time using PXE will cause heavy load on the TFTP server, because all nodes will request the boot image at the same time. We recommend booting the nodes at different intervals.

2. Open a browser and point it to the Crowbar Web interface on the Administration Server, for example http://192.168.124.10/. Log in as user crowbar. The password is crowbar by default, if you have not changed it. Click Nodes > Dashboard to open the Node Dashboard.

3. Each node that has successfully booted will be listed as being in state Discovered, indicated by a yellow bullet. The nodes will be listed with their MAC address as a name. Wait until all nodes are listed as Discovered before proceeding. If a node does not report as Discovered, it may need to be rebooted manually.

FIGURE 10.1: DISCOVERED NODES
4. Although this step is optional, we recommend properly grouping your nodes at this stage, since it lets you clearly arrange all nodes. Grouping the nodes by role would be one option, for example control, compute, object storage (Swift), and block storage (Ceph).

   a. Enter the name of a new group into the *New Group* text box and click *Add Group*.

   b. Drag and drop a node onto the title of the newly created group. Repeat this step for each node you want to put into the group.

5. To allocate all nodes, click *Nodes > Bulk Edit*. To allocate a single node, click the name of a node, then click *Edit*. 
Important: Limit the Number of Concurrent Node Deployments

Deploying many nodes in bulk mode will cause heavy load on the Administration Server. The subsequent concurrent Chef client runs triggered by the nodes will require a lot of RAM on the Administration Server.

Therefore it is recommended to limit the number of concurrent “Allocations” in bulk mode. The maximum number depends on the amount of RAM on the Administration Server—limiting concurrent deployments to five up to ten is recommended.
6. In single node editing mode, you can also specify the *Filesystem Type* for the node. By default, it is set to *ext4* for all nodes. We recommend using the default.

7. Provide a meaningful *Alias*, *Public Name*, and a *Description* for each node, and then check the *Allocate* box. You can also specify the *Intended Role* for the node. This optional setting is used to make reasonable proposals for the barclamps. By default the *Target Platform* is set to *SLES 12 SP2*.

**Tip: Alias Names**

Providing an alias name will change the default node names (MAC address) to the name you provided, making it easier to identify the node. Furthermore, this alias will also be used as a DNS *CNAME* for the node in the admin network. As a result, you can access the node via this alias when, for example, logging in via SSH.

**Tip: Public Names**

A node's *Alias Name* is resolved by the DNS server installed on the Administration Server and therefore only available within the cloud network. The OpenStack Dashboard or some APIs (*keystone-server*, *glance-server*, *cinder-controller*, *neutron-server*, *nova-controller*, and *swift-proxy*) can be accessed from outside the SUSE OpenStack Cloud network. To be able to access them by name, these names need to be resolved by a name server placed outside of the SUSE OpenStack Cloud network. If you have created DNS entries for nodes, specify the name in the *Public Name* field.

The *Public Name* is never used within the SUSE OpenStack Cloud network. However, if you create an SSL certificate for a node that has a public name, this name must be added as an *AlternativeName* to the certificate. See Section 2.3, “SSL Encryption” for more information.
8. When you have filled in the data for all nodes, click Save. The nodes will reboot and commence the AutoYaST-based SUSE Linux Enterprise Server installation (or installation of other target platforms, if selected) via a second boot using PXE. Click Nodes > Dashboard to return to the Node Dashboard.

9. Nodes that are being installed are listed with the status Installing (yellow/green bullet). When the installation of a node has finished, it is listed as being Ready, indicated by a green bullet. Wait until all nodes are listed as Ready before proceeding.
10.3 Converting Existing SUSE Linux Enterprise Server 12 SP2 Machines Into SUSE OpenStack Cloud Nodes

SUSE OpenStack Cloud allows adding existing machines installed with SUSE Linux Enterprise Server 12 SP2 to the pool of nodes. This enables you to use spare machines for SUSE OpenStack Cloud, and offers an alternative way of provisioning and installing nodes (via SUSE Manager for example). The machine must run SUSE Linux Enterprise Server 12 SP2.

The machine also needs to be on the same network as the Administration Server, because it needs to communicate with this server. Since the Administration Server provides a DHCP server, we recommend configuring this machine to get its network assignments from DHCP. If it has a static IP address, make sure it is not already used in the admin network. Check the list of used IP addresses with the YaST Crowbar module as described in Section 7.2, “Networks”.
Proceed as follows to convert an existing SUSE Linux Enterprise Server 12 SP2 machine into a SUSE OpenStack Cloud node:

1. Download the `crowbar_register` script from the Administration Server at `http://192.168.124.10:8091/suse-12.2/x86_64/crowbar_register`. Replace the IP address with the IP address of your Administration Server using `curl` or `wget`. Note that the download only works from within the admin network.

2. Make the `crowbar_register` script executable (`chmod a+x crowbar_register`).

3. Run the `crowbar_register` script. If you have multiple network interfaces, the script tries to automatically detect the one that is connected to the admin network. You may also explicitly specify which network interface to use by using the `--interface` switch, for example `crowbar_register --interface eth1`.

4. After the script has successfully run, the machine has been added to the pool of nodes in the SUSE OpenStack Cloud and can be used as any other node from the pool.

## 10.4 Post-Installation Configuration

The following lists some *optional* configuration steps like configuring node updates, monitoring, access, and enabling SSL. You may entirely skip the following steps or perform any of them at a later stage.

### 10.4.1 Deploying Node Updates with the Updater Barclamp

To keep the operating system and the SUSE OpenStack Cloud software itself up-to-date on the nodes, you can deploy either the Updater barclamp or the SUSE Manager barclamp. The latter requires access to a SUSE Manager server. The Updater barclamp uses Zypper to install updates and patches from repositories made available on the Administration Server.

The easiest way to provide the required repositories on the Administration Server is to set up an SMT server as described in Chapter 4, *Installing and Setting Up an SMT Server on the Administration Server (Optional)*. Alternatives to setting up an SMT server are described in Chapter 5, *Software Repository Setup*. 
The Updater barclamp lets you deploy updates that are available on the update repositories at the moment of deployment. Each time you deploy updates with this barclamp you can choose a different set of nodes to which the updates are deployed. This lets you exactly control where and when updates are deployed.

To deploy the Updater barclamp, proceed as follows. For general instructions on how to edit barclamp proposals refer to Section 9.3, “Deploying Barclamp Proposals”.

1. Open a browser and point it to the Crowbar Web interface on the Administration Server, for example http://192.168.124.10/. Log in as user crowbar. The password is crowbar by default, if you have not changed it during the installation.

2. Open the barclamp menu by clicking Barclamps > Crowbar. Click the Updater barclamp entry and Create to open the proposal.

3. Configure the barclamp by the following attributes. This configuration always applies to all nodes on which the barclamp is deployed. Individual configurations for certain nodes are only supported by creating a separate proposal.

   **Use zypper**
   Define which Zypper subcommand to use for updating. *patch* will install all patches applying to the system from the configured update repositories that are available. *update* will update packages from all configured repositories (not just the update repositories) that have a higher version number than the installed packages. *dist-upgrade* replaces each package installed with the version from the repository and deletes packages not available in the repositories.
   We recommend using *patch*.

   **Enable GPG Checks**
   If set to true (recommended), checks if packages are correctly signed.

   **Automatically Agree With Licenses**
   If set to true (recommended), Zypper automatically accepts third party licenses.

   **Include Patches that need Reboots (Kernel)**
   Installs patches that require a reboot (for example Kernel or glibc updates). Only set this option to *true* when you can safely reboot the affected nodes. Refer to Chapter 15, SUSE OpenStack Cloud Maintenance for more information. Installing a new Kernel and not rebooting may result in an unstable system.
**Reboot Nodes if Needed**

Automatically reboots the system in case a patch requiring a reboot has been installed. Only set this option to `true` when you can safely reboot the affected nodes. Refer to *Chapter 15, SUSE OpenStack Cloud Maintenance* for more information.

![Figure 10.6: SUSE Updater Barclamp: Configuration](image)

4. Choose the nodes on which the Updater barclamp should be deployed in the *Node Deployment* section by dragging them to the *Updater* column.
**Warning: Updating Software Packages on Cluster Nodes**

Before starting an update for a cluster node, either stop the cluster stack on that node or put the cluster into maintenance mode. If the cluster resource manager on a node is active during the software update, this can lead to unpredictable results like fencing of active nodes. For detailed instructions refer to [http://www.suse.com/documentation/sle-ha-12/book_sleha/data/sec_ha_migration_update.html](http://www.suse.com/documentation/sle-ha-12/book_sleha/data/sec_ha_migration_update.html).
10.4.2 Configuring Node Updates with the *SUSE Manager Client* Barclamp

To keep the operating system and the SUSE OpenStack Cloud software itself up-to-date on the nodes, you can deploy either *SUSE Manager Client* barclamp or the Updater barclamp. The latter uses Zypper to install updates and patches from repositories made available on the Administration Server.

To enable the SUSE Manager server to manage the SUSE OpenStack Cloud nodes, you must make the respective SUSE OpenStack Cloud 7 channels, the SUSE Linux Enterprise Server 12 SP2 channels, and the channels for extensions used with your deployment (High Availability Extension, SUSE Enterprise Storage) available via an activation key.

The *SUSE Manager Client* barclamp requires access to the SUSE Manager server from every node it is deployed to.

To deploy the *SUSE Manager Client* barclamp, proceed as follows. For general instructions on how to edit barclamp proposals refer to Section 9.3, “Deploying Barclamp Proposals”.

1. Download the package `rhn-org-trusted-ssl-cert-VERSION-RELEASE.noarch.rpm` from `https://susemanager.example.com/pub/`. `VERSION` and `RELEASE` may vary, ask the administrator of the SUSE Manager for the correct values. `susemanager.example.com` needs to be replaced by the address of your SUSE Manager server. Copy the file you downloaded to `/opt/dell/chef/cookbooks/suse-manager-client/files/default/ssl-cert.rpm` on the Administration Server. The package contains the SUSE Manager's CA SSL Public Certificate. The certificate installation has not been automated on purpose, because downloading the certificate manually enables you to check it before copying it.

2. Re-install the barclamp by running the following command:

   ```bash
   /opt/dell/bin/barclamp_install.rb --rpm core
   ```

3. Open a browser and point it to the Crowbar Web interface on the Administration Server, for example `http://192.168.124.10/`. Log in as user `crowbar`. The password is `crowbar` by default, if you have not changed it during the installation.

4. Open the barclamp menu by clicking *Barclamps > Crowbar*. Click the *SUSE Manager Client* barclamp entry and *Create* to open the proposal.

5. Specify the URL of the script for activation of the clients in the *URL of the bootstrap script* field.
6. Choose the nodes on which the SUSE Manager barclamp should be deployed in the Deployment section by dragging them to the suse-manager-client column. We recommend deploying it on all nodes in the SUSE OpenStack Cloud.

![SUSE Manager Client](image)

**FIGURE 10.8: SUSE MANAGER BARCLAMP**
10.4.3 Mounting NFS Shares on a Node

The NFS barclamp allows you to mount NFS share from a remote host on nodes in the cloud. This feature can, for example, be used to provide an image repository for Glance. Note that all nodes which are to mount an NFS share must be able to reach the NFS server. This requires manually adjusting the network configuration.

To deploy the NFS barclamp, proceed as follows. For general instructions on how to edit barclamp proposals refer to Section 9.3, “Deploying Barclamp Proposals”.

1. Open a browser and point it to the Crowbar Web interface on the Administration Server, for example http://192.168.124.10/. Log in as user _crowbar_. The password is _crowbar_ by default, if you have not changed it during the installation.

2. Open the barclamp menu by clicking _Barclamps > Crowbar_. Click the _NFS Client_ barclamp entry and _Create_ to open the proposal.

3. Configure the barclamp by the following attributes. Each set of attributes is used to mount a single NFS share.

   _Name_
   
   Unique name for the current configuration. This name is used in the Web interface only to distinguish between different shares.

   _NFS Server_
   
   Fully qualified host name or IP address of the NFS server.

   _Export_
   
   Export name for the share on the NFS server.

   _Path_
   
   Mount point on the target machine.
Mount Options

Mount options that will be used on the node. See `man 8 mount` for general mount options and `man 5 nfs` for a list of NFS-specific options. Note that the general option `nofail` (do not report errors if device does not exist) is automatically set.

4. After having filled in all attributes, click Add. If you want to mount more than one share, fill in the data for another NFS mount. Otherwise click Save to save the data, or Apply to deploy the proposal. Note that you must always click Add before saving or applying the barclamp, otherwise the data that was entered will be lost.

5. Go to the Node Deployment section and drag and drop all nodes, on which the NFS shares defined above should be mounted, to the nfs-client column. Click Apply to deploy the proposal.

The NFS barclamp is the only barclamp that lets you create different proposals, enabling you to mount different NFS shares on different nodes. When you have created an NFS proposal, a special Edit is shown in the barclamp overview of the Crowbar Web interface. Click it to either Edit an existing proposal or Create a new one. New proposals must have unique names.
10.4.4 Using an Externally Managed Ceph Cluster

While deploying Ceph from within SUSE OpenStack Cloud is possible, leveraging an external Ceph cluster is also fully supported. Follow the instructions below to use an external Ceph cluster in SUSE OpenStack Cloud.

10.4.4.1 Requirements

Ceph Release

SUSE OpenStack Cloud uses Ceph clients from the Ceph “Hammer” release. Since other Ceph releases may not fully work with “Hammer” clients, the external Ceph installation must run a “Hammer” release, too. Other releases are not supported.

Network Configuration

The external Ceph cluster needs to be connected to a separate VLAN, which is mapped to the SUSE OpenStack Cloud storage VLAN. See Section 2.1, “Network” for more information.

10.4.4.2 Making Ceph Available on the SUSE OpenStack Cloud Nodes

Ceph can be used from the KVM Compute Nodes, with Cinder, and with Glance. The following installation steps need to be executed on each node accessing Ceph:

⚠️ Important: Installation Workflow

The following steps need to be executed before the barclamps get deployed.
Warning: Do Not Deploy the Ceph Barclamp

If using an external Ceph cluster, you must not deploy the SUSE OpenStack Cloud Ceph barclamp. An external and an internal Ceph cluster cannot be used together.

1. Log in as user root to a machine in the Ceph cluster and generate keyring files for Cinder users. Optionally, you can generate keyring files for the Glance users (only needed when using Glance with Ceph/Rados). The keyring file that will be generated for Cinder will also be used on the Compute Nodes. To do so, you need to specify pool names and user names for both services. The default names are:

<table>
<thead>
<tr>
<th></th>
<th>Glance</th>
<th>Cinder</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>User</strong></td>
<td>glance</td>
<td>cinder</td>
</tr>
<tr>
<td><strong>Pool</strong></td>
<td>images</td>
<td>volumes</td>
</tr>
</tbody>
</table>

Make a note of user and pool names in case you do not use the default values. You will need this information later, when deploying Glance and Cinder.

2. Warning: Automatic Changes to the Cluster

If you decide to use the admin keyring file to connect the external Ceph cluster, be aware that after Crowbar discovers this admin keyring, it will create clients keyrings, pools, and capabilities needed to run Glance, Cinder, or Nova integration.

If you have access to the admin keyring file and agree that automatic changes will be done to the cluster as described above, copy it together with the Ceph configuration file to the Administration Server. If you cannot access this file, create a keyring:

a. When you can access the admin keyring file ceph.client.admin.keyring, copy it together with ceph.conf (both files are usually located in /etc/ceph) to a temporary location on the Administration Server, for example /root/tmp/.

b. If you cannot access the admin keyring file create a new keyring file with the following commands. Re-run the commands for Glance, too, if needed. First create a key:

```bash
ceph auth get-or-create-key client.USERNAME mon "allow r"
```
Using an Externally Managed Ceph Cluster SUSE OpenStack Cloud 7

```bash
osd 'allow class-read object_prefix rbd_children, allow rwx 
  pool=POOLNAME'
```

Replace `USERNAME` and `POOLNAME` with the respective values.

Now use the key to generate the keyring file `./etc/ceph/
ceph.client.USERNAME.keyring`:

```bash
ceph-authtool 
  /etc/ceph/ceph.client.USERNAME.keyring 
  --create-keyring --name=client.USERNAME> 
  --add-key=KEY
```

Replace `USERNAME` with the respective value.

Copy the Ceph configuration file `ceph.conf` (usually located in `./etc/ceph`) and the keyring file(s) generated above to a temporary location on the Administration Server, for example `./root/tmp/`.

3. Log in to the Crowbar Web interface and check whether the nodes which should have access to the Ceph cluster already have an IP address from the storage network. Do so by going to the Dashboard and clicking the node name. An IP address should be listed for storage. Make a note of the Full name of each node that has no storage network IP address.

4. Log in to the Administration Server as user `root` and run the following command for all nodes you noted down in the previous step:

```bash
crowbar network allocate_ip "default" NODE "storage" "host"
```

`NODE` needs to be replaced by the node's name.

5. After executing the command in the previous step for all affected nodes, run the command `chef-client` on the Administration Server.

6. Log in to each affected node as user `root`. See Q: for instructions. On each node, do the following:

   a. Manually install nova, cinder (if using cinder) and/or glance (if using glance) packages with the following commands:

```bash
zypper in openstack-glance
zypper in openstack-cinder
zypper in openstack-nova
```
b. Copy the ceph.conf file from the Administration Server to /etc/ceph:

```
mkdir -p /etc/ceph
scp root@admin:/root/tmp/ceph.conf /etc/ceph
chmod 664 /etc/ceph/ceph.conf
```

c. Copy the keyring file(s) to /etc/ceph. The exact process depends on whether you have copied the admin keyring file or whether you have created your own keyrings:

i. If you have copied the admin keyring file, run the following command on the Control Node(s) on which Cinder and Glance will be deployed, and on all KVM Compute Nodes:

```
scp root@admin:/root/tmp/ceph.client.admin.keyring /etc/ceph
chmod 640 /etc/ceph/ceph.client.admin.keyring
```

ii. If you have created your own keyrings, run the following command on the Control Node on which Cinder will be deployed, and on all KVM Compute Nodes to copy the Cinder keyring:

```
scp root@admin:/root/tmp/ceph.client.cinder.keyring /etc/ceph
chmod 640 /etc/ceph/ceph.client.cinder.keyring
```

Now copy the Glance keyring to the Control Node on which Glance will be deployed:

```
scp root@admin:/root/tmp/ceph.client.glance.keyring /etc/ceph
chmod 640 /etc/ceph/ceph.client.glance.keyring
```

d. Adjust the ownership of the keyring file as follows:

Glance: `chown root.cinder /etc/ceph/ceph.client.cinder.keyring`
Cinder: `chown root.glance /etc/ceph/ceph.client.glance.keyring`
KVM Compute Nodes: `chown root.nova /etc/ceph/ceph.volumes.keyring`

10.4.5 Accessing the Nodes

The nodes can only be accessed via SSH from the Administration Server—it is not possible to connect to them from any other host in the network.
The root account on the nodes has no password assigned, therefore logging in to a node as root@node is only possible via SSH with key authentication. By default, you can only log in with the key of the root of the Administration Server (root@admin) via SSH only.

If you have added additional users to the Administration Server and want to give them permission to log in to the nodes as well, you need to add these users’ public SSH keys to root’s authorized_keys file on all nodes. Proceed as follows:

PROCEDURE 10.1: COPYING SSH KEYS TO ALL NODES

1. If they do not already exist, generate an SSH key pair with ssh-keygen. This key pair belongs to the user that you use to log in to the nodes. Alternatively, copy an existing public key with ssh-copy-id. Refer to the respective man pages for more information.

2. Log in to the Crowbar Web interface on the Administration Server, for example http://192.168.124.10/ (user name and default password: crowbar).

3. Open the barclamp menu by clicking Barclamps > Crowbar. Click the Provisioner barclamp entry and Edit the Default proposal.

4. Copy and paste the public SSH key of the user into the Additional SSH Keys text box. If adding keys for multiple users, note that each key needs to be placed on a new line.

5. Click Apply to deploy the keys and save your changes to the proposal.

10.4.6 Enabling SSL

To enable SSL to encrypt communication within the cloud (see Section 2.3, “SSL Encryption” for details), all nodes running encrypted services need SSL certificates. An SSL certificate is, at a minimum, required on the Control Node.

Each certificate consists of a pair of files: the certificate file (for example, signing_cert.pem) and the key file (for example, signing_key.pem). If you use your own certificate authority (CA) for signing, you will also need a certificate file for the CA (for example, ca.pem). We recommend copying the files to the /etc directory using the directory structure outlined below. If you use a dedicated certificate for each service, create directories named after the services (for example, /etc/keystone). If you are using shared certificates, use a directory such as /etc/cloud.

RECOMMENDED LOCATIONS FOR SHARED CERTIFICATES

SSL Certificate File

/etc/cloud/ssl/certs/signing_cert.pem
SSL Key File
/etc/cloud/private/signing_key.pem

CA Certificates File
/etc/cloud/ssl/certs/ca.pem

10.5 Editing Allocated Nodes

All nodes that have been allocated can be decommissioned or re-installed. Click a node's name in the Node Dashboard to open a screen with the node details. The following options are available:

**Forget**
Deletes a node from the pool. If you want to re-use this node again, it needs to be reallocated and re-installed from scratch.

**Reinstall**
Triggers a reinstallation. The machine stays allocated. Any barclamps that were deployed on the machine will be re-applied after the installation.

**Deallocate**
Temporarily removes the node from the pool of nodes. After you reallocate the node it will take its former role. Useful for adding additional machines in times of high load or for decommissioning machines in times of low load.

**Power Actions > Reboot**
Reboots the node.

**Power Actions > Shutdown**
Shuts the node down.

**Power Actions > Power Cycle**
Forces a (non-clean) shuts down and a restart afterward. Only use if a reboot does not work.

**Power Actions > Power Off**
Forces a (non-clean) node shut down. Only use if a clean shut down does not work.
### Node Information

**Full Name**: d52-54-00-8e-96-71 cloud fs

**Hardware**: Standard PC (i440FX + P6X, 1996)

**Public Name**: 

**Service Tag**: Not Specified (Not Specified)

**Description**: 

**CPU**: QEMU virtual CPU version 2.3.1 (x86_64)

**Target Platform**: SLES 12 SP2

**Memory**: 3.66 GB

**Uptime**: 32 minutes 46 seconds

**Disk Drives**: 2

**Allocated**: Allocated

**MAC Address**: 52.54.00.8e.96.71

**State**: Ready

**Switch Name/Port**: Unknown / Unknown

**Intended Role**: Controller

**Availability Zone**: 

**IP Address**: admin
- eth0: 192.168.134.81

**Links**: No links available

**Applied Barclamps**: Crowbar
- DNS
- Deployer
- IFM
- Logging
- KVM
- Network
- Provisioner

**Applied Roles**: Crowbar
- bmc-net-client
- deployer-client
- dmidestem
- ipmi
- logging-client
- network
- ntp-client
- provisioner-base

---

**FIGURE 10.11: NODE INFORMATION**
Warning: Editing Nodes in a Production System

When de-allocating nodes that provide essential services, the complete cloud will become unusable. If you have not disabled redundancy, you can disable single storage nodes or single compute nodes. However, disabling Control Node(s) will cause major problems. It will either “kill” certain services (for example Swift) or, at worst the complete cloud (when deallocating the Control Node hosting Neutron). You should also not disable nodes providing Ceph monitoring services, or the nodes providing swift ring and proxy services.
11 Deploying the OpenStack Services

After the nodes are installed and configured you can start deploying the OpenStack components to finalize the installation. The components need to be deployed in a given order, because they depend on one another. The *Pacemaker* component for an HA setup is the only exception from this rule—it can be set up at any time. However, when deploying SUSE OpenStack Cloud from scratch, we recommend deploying the *Pacemaker* proposal(s) first. Deployment for all components is done from the Crowbar Web interface through recipes, so-called “barclamps”. (See Section 11.24, “Roles and Services in SUSE OpenStack Cloud” for a table of all roles and services, and how to start and stop them.)

The components controlling the cloud, including storage management and control components, need to be installed on the Control Node(s) (refer to Section 1.2, “The Control Node(s)” for more information). However, you may *not* use your Control Node(s) as a compute node or storage host for Swift or Ceph. These components may *not* be installed on the Control Node(s): *swift-storage*, all Ceph components, and *nova-compute-* *. These components must be installed on dedicated nodes.

When deploying an HA setup, the controller nodes are replaced by one or more controller clusters consisting of at least two nodes, and three are recommended. We recommend setting up three separate clusters for data, services, and networking. See Section 2.6, “High Availability” for more information on requirements and recommendations for an HA setup.

The OpenStack components need to be deployed in the following order. For general instructions on how to edit and deploy barclamps, refer to Section 9.3, “Deploying Barclamp Proposals”. Any optional components that you elect to use must be installed in their correct order.

1. **Deploying Pacemaker (Optional, HA Setup Only)**
2. **Deploying the Database**
3. **Deploying RabbitMQ**
4. **Deploying Keystone**
5. **Deploying Ceph (optional)**
6. **Deploying Swift (optional)**
7. **Deploying Glance**
8. **Deploying Cinder**
11.1 Deploying Pacemaker (Optional, HA Setup Only)

To make the SUSE OpenStack Cloud controller functions and the Compute Nodes highly available, set up one or more clusters by deploying Pacemaker (see Section 2.6, “High Availability” for details). Since it is possible (and recommended) to deploy more than one cluster, a separate proposal needs to be created for each cluster.

Deploying Pacemaker is optional. In case you do not want to deploy it, skip this section and start the node deployment by deploying the database as described in Section 11.2, “Deploying the Database”.

Note: Number of Cluster Nodes

To set up a cluster, at least two nodes are required. If you are setting up a cluster for storage with replicated storage via DRBD (for example for a cluster for the database and RabbitMQ), exactly two nodes are required. For all other setups an odd number of nodes with a minimum of three nodes is strongly recommended. See Section 2.6.5, “Cluster Requirements and Recommendations” for more information.
To create a proposal, go to Barclamps › OpenStack and click Edit for the Pacemaker barclamp. A drop-down box where you can enter a name and a description for the proposal opens. Click Create to open the configuration screen for the proposal.

![Status Name Description](image)

**Important: Proposal Name**

The name you enter for the proposal will be used to generate host names for the virtual IP addresses of HAProxy. By default, the names follow this scheme:

- `cluster-PROPOSAL_NAME.FQDN` (for the internal name)
- `public.cluster-PROPOSAL_NAME.FQDN` (for the public name)

For example, when `PROPOSAL_NAME` is set to `data`, this results in the following names:

- `cluster-data.example.com`
- `public.cluster-data.example.com`

For requirements regarding SSL encryption and certificates, see Section 2.3, "SSL Encryption".

The following options are configurable in the Pacemaker configuration screen:

**Transport for Communication**

Choose a technology used for cluster communication. You can choose between Multicast (UDP), sending a message to multiple destinations, or Unicast (UDPU), sending a message to a single destination. By default unicast is used.

**Policy when cluster does not have quorum**

Whenever communication fails between one or more nodes and the rest of the cluster a “cluster partition” occurs. The nodes of a cluster are split in partitions but are still active. They can only communicate with nodes in the same partition and are unaware of the separated nodes. The cluster partition that has the majority of nodes is defined to have “quorum”.
This configuration option defines what to do with the cluster partition(s) that do not have the quorum. See http://www.suse.com/documentation/sle-ha-12/book_sleha/data/sec_ha_config_basics_global.html, section Option no-quorum-policy for details.

The recommended setting is to choose Stop. However, Ignore is enforced for two-node clusters to ensure that the remaining node continues to operate normally in case the other node fails. For clusters using shared resources, choosing freeze may be used to ensure that these resources continue to be available.

**STONITH: Configuration mode for STONITH**

“Misbehaving” nodes in a cluster are shut down to prevent them from causing trouble. This mechanism is called STONITH (“Shoot the other node in the head”). STONITH can be configured in a variety of ways, refer to http://www.suse.com/documentation/sle-ha-12/book_sleha/data/cha_ha_fencing.html for details. The following configuration options exist:

**Configured manually**

STONITH will not be configured when deploying the barclamp. It needs to be configured manually as described in http://www.suse.com/documentation/sle-ha-12/book_sleha/data/cha_ha_fencing.html. For experts only.

**Configured with IPMI data from the IPMI barclamp**

Using this option automatically sets up STONITH with data received from the IPMI barclamp. Being able to use this option requires that IPMI is configured for all cluster nodes. This should be done by default. To check or change the IPMI deployment, go to Barclamps > Crowbar > IPMI > Edit. Also make sure the Enable BMC option is set to true on this barclamp.

⚠️ **Important: STONITH Devices Must Support IPMI**

To configure STONITH with the IPMI data, all STONITH devices must support IPMI. Problems with this setup may occur with IPMI implementations that are not strictly standards compliant. In this case it is recommended to set up STONITH with STONITH block devices (SBD).
**Configured with STONITH Block Devices (SBD)**

This option requires manually setting up shared storage and a watchdog on the cluster nodes before applying the proposal. To do so, proceed as follows:

1. Prepare the shared storage. The path to the shared storage device must be persistent and consistent across all nodes in the cluster. The SBD device must not use host-based RAID, cLVM2, nor reside on a DRBD* instance.

2. Install the package `sbd` on all cluster nodes.

3. Initialize the SBD device with by running the following command. Make sure to replace `/dev/SBD` with the path to the shared storage device.

```bash
sbd -d /dev/SBD create
```

Refer to [http://www.suse.com/documentation/sle-ha-12/book_sleha/data/sec_ha_storage_protect_fencing.html#pro_ha_storage_protect_sbd_create](http://www.suse.com/documentation/sle-ha-12/book_sleha/data/sec_ha_storage_protect_fencing.html#pro_ha_storage_protect_sbd_create) for details.

In *Kernel module for watchdog*, specify the respective kernel module to be used. Find the most commonly used watchdog drivers in the following table:

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
<td><code>hpwdt</code></td>
</tr>
<tr>
<td>Dell, Fujitsu, Lenovo (Intel TCO)</td>
<td><code>iTCO_wdt</code></td>
</tr>
<tr>
<td>VM on z/VM on IBM mainframe</td>
<td><code>vmwatchdog</code></td>
</tr>
<tr>
<td>Xen VM (DomU)</td>
<td><code>xen_xdt</code></td>
</tr>
<tr>
<td>Generic</td>
<td><code>softdog</code></td>
</tr>
</tbody>
</table>

If your hardware is not listed above, either ask your hardware vendor for the right name or check the following directory for a list of choices: `/lib/modules/KERNEL_VERSION/kernel/drivers/watchdog`.

Alternatively, list the drivers that have been installed with your kernel version:

```bash
root # rpm -ql kernel-VERSION | grep watchdog
```

If the nodes need different watchdog modules, leave the text box empty.
After the shared storage has been set up, specify the path using the “by-id” notation (/dev/disk/by-id/DEVICE). It is possible to specify multiple paths as a comma-separated list.

Deploying the barclamp will automatically complete the SBD setup on the cluster nodes by starting the SBD daemon and configuring the fencing resource.

**Configured with one shared resource for the whole cluster**

All nodes will use the identical configuration. Specify the Fencing Agent to use and enter Parameters for the agent.

To get a list of STONITH devices which are supported by the High Availability Extension, run the following command on an already installed cluster nodes: `stonith -L`. The list of parameters depends on the respective agent. To view a list of parameters use the following command:

```bash
stonith -t agent -n
```

**Configured with one resource per node**

All nodes in the cluster use the same Fencing Agent, but can be configured with different parameters. This setup is, for example, required when nodes are in different chassis and therefore need different ILO parameters.

To get a list of STONITH devices which are supported by the High Availability Extension, run the following command on an already installed cluster nodes: `stonith -L`. The list of parameters depends on the respective agent. To view a list of parameters use the following command:

```bash
stonith -t agent -n
```

**Configured for nodes running in libvirt**

Use this setting for completely virtualized test installations. This option is not supported.

**STONITH: Do not start corosync on boot after fencing**

With STONITH, Pacemaker clusters with two nodes may sometimes hit an issue known as STONITH deathmatch where each node kills the other one, resulting in both nodes rebooting all the time. Another similar issue in Pacemaker clusters is the fencing loop, where a reboot caused by STONITH will not be enough to fix a node and it will be fenced again and again.
This setting can be used to limit these issues. When set to true, a node that has not been properly shut down or rebooted will not start the services for Pacemaker on boot. Instead, the node will wait for action from the SUSE OpenStack Cloud operator. When set to false, the services for Pacemaker will always be started on boot. The Automatic value is used to have the most appropriate value automatically picked: it will be true for two-node clusters (to avoid STONITH deathmatches), and false otherwise. When a node boots but not starts corosync because of this setting, then the node's status is in the Node Dashboard is set to "Problem" (red dot). To make this node usable again, see Section 15.5.2, “Re-adding the Node to the Cluster”.

Mail Notifications: Enable Mail Notifications
Get notified of cluster node failures via e-mail. If set to true, you need to specify which SMTP Server to use, a prefix for the mails' subject and sender and recipient addresses. Note that the SMTP server must be accessible by the cluster nodes.

DRBD: Prepare Cluster for DRBD
Set up DRBD for replicated storage on the cluster. This option requires a two-node cluster with a spare hard disk for each node. The disks should have a minimum size of 100 GB. Using DRBD is recommended for making the database and RabbitMQ highly available. For other clusters, set this option to False.

HAProxy: Public name for public virtual IP
The public name is the host name that will be used instead of the generated public name (see Important: Proposal Name) for the public virtual IP address of HAProxy. (This is the case when registering public endpoints, for example). Any name specified here needs to be resolved by a name server placed outside of the SUSE OpenStack Cloud network.
Deploying Pacemaker (Optional, HA Setup Only) SUSE OpenStack Cloud 7

The Pacemaker component consists of the following roles. Deploying the `hawk-server` role is optional:

**pacemaker-cluster-member**

Deploy this role on all nodes that should become member of the cluster.

**hawk-server**

Deploying this role is optional. If deployed, sets up the Hawk Web interface which lets you monitor the status of the cluster. The Web interface can be accessed via `https://IP-ADDRESS:7630`. The default hawk credentials are username `hacluster`, password `crowbar`.

The password is visible and editable in the *Custom* view of the Pacemaker barclamp, and also in the `"corosync":` section of the *Raw* view.

Note that the GUI on SUSE OpenStack Cloud can only be used to monitor the cluster status and not to change its configuration.

*hawk-server* may be deployed on at least one cluster node. It is recommended to deploy it on all cluster nodes.

**pacemaker-remote**

Deploy this role on all nodes that should become members of the Compute Nodes cluster. They will run as Pacemaker remote nodes that are controlled by the cluster, but do not affect quorum. Instead of the complete cluster stack, only the `pacemaker-remote` component will be installed on this nodes.
After a cluster has been successfully deployed, it is listed under **Available Clusters** in the **Deployment** section and can be used for role deployment like a regular node.

⚠️ **Warning: Deploying Roles on Single Cluster Nodes**

When using clusters, roles from other barclamps must never be deployed to single nodes that are already part of a cluster. The only exceptions from this rule are the following roles:

- **cinder-volume**
- **swift-proxy + swift-dispersion**
- **swift-ring-compute**
- **swift-storage**
**Important: Service Management on the Cluster**

After a role has been deployed on a cluster, its services are managed by the HA software. You must *never* manually start or stop an HA-managed service, nor configure it to start on boot. Services may only be started or stopped by using the cluster management tools Hawk or the crm shell. See [http://www.suse.com/documentation/sle-ha-12/book_sleha/data/sec_ha_config_basics_resources.html](http://www.suse.com/documentation/sle-ha-12/book_sleha/data/sec_ha_config_basics_resources.html) for more information.

**Note: Testing the Cluster Setup**

To check whether all cluster resources are running, either use the Hawk Web interface or run the command `crm_mon -1r`. If it is not the case, clean up the respective resource with `crm resource cleanup RESOURCE`, so it gets respawned.

Also make sure that STONITH correctly works before continuing with the SUSE OpenStack Cloud setup. This is especially important when having chosen a STONITH configuration requiring manual setup. To test if STONITH works, log in to a node on the cluster and run the following command:

```
pkill -9 corosync
```

In case STONITH is correctly configured, the node will reboot.

Before testing on a production cluster, plan a maintenance window in case issues should arise.

### 11.2 Deploying the Database

The very first service that needs to be deployed is the *Database*. The database component is using PostgreSQL and is used by all other components. It must be installed on a Control Node. The Database can be made highly available by deploying it on a cluster.

The only attribute you may change is the maximum number of database connections (*Global Connection Limit*). The default value should usually work—only change it for large deployments in case the log files show database connection failures.
To make the database highly available, deploy it on a cluster instead of a single Control Node. This also requires shared storage for the cluster that hosts the database data. To achieve this, either set up a cluster with DRBD support (see Section 11.1, “Deploying Pacemaker (Optional, HA Setup Only)”), or use “traditional” shared storage like an NFS share. We recommend using a dedicated cluster to deploy the database together with RabbitMQ, since both components require shared storage.

Deploying the database on a cluster makes an additional High Availability section available in the Attributes section of the proposal. Configure the Storage Mode in this section. There are two options:

**DRBD**

This option requires a two-node cluster that has been set up with DRBD. Also specify the Size to Allocate for DRBD Device (in Gigabytes). The suggested value of 50 GB should be sufficient.
Shared Storage

Use a shared block device or an NFS mount for shared storage. Concordantly with the mount command, you need to specify three attributes: *Name of Block Device or NFS Mount Specification* (the mount point), the *Filesystem Type*, and the *Mount Options*. Refer to `man 8 mount` for details on file system types and mount options.

⚠️ Important: NFS Export Options for Shared Storage

To use an NFS share as shared storage for a cluster, export it on the NFS server with the following options:

```
rw,async,insecure,no_subtree_check,no_root_squash
```

If mounting the NFS share on the cluster nodes fails, change the export options and re-apply the proposal. However, before doing so, you need to clean up the respective resources on the cluster nodes as described in [http://www.suse.com/documentation/sle-ha-12/book_sleha/data/sec_ha_config_crm.html#sec_ha_manual_config_cleanup](http://www.suse.com/documentation/sle-ha-12/book_sleha/data/sec_ha_config_crm.html#sec_ha_manual_config_cleanup).

⚠️ Important: Ownership of a Shared NFS Directory

The shared NFS directory that is used for the PostgreSQL database needs to be owned by the same user ID and group ID as of the `postgres` user on the HA database cluster.

To get the IDs, log in to one of the HA database cluster machines and issue the following commands:

```
id -g postgres
ggetent group postgres | cut -d: -f3
```

The first command returns the numeric user ID, the second one the numeric group ID. Now log in to the NFS server and change the ownership of the shared NFS directory, for example:

```
chown UID:GID /exports/cloud/db
```

Replace `UID` and `GID` by the respective numeric values retrieved above.
Warning: Re-Deploying SUSE OpenStack Cloud with Shared Storage

When re-deploying SUSE OpenStack Cloud and reusing a shared storage hosting database files from a previous installation, the installation may fail due to the old database being used. Always delete the old database from the shared storage before re-deploying SUSE OpenStack Cloud.

11.3 Deploying RabbitMQ

The RabbitMQ messaging system enables services to communicate with the other nodes via Advanced Message Queue Protocol (AMQP). Deploying it is mandatory. RabbitMQ needs to be installed on a Control Node. RabbitMQ can be made highly available by deploying it on a cluster. We recommend not changing the default values of the proposal's attributes.

Virtual Host

Name of the default virtual host to be created and used by the RabbitMQ server (default_vhost configuration option in rabbitmq.config).

Port

Port the RabbitMQ server listens on (tcp_listeners configuration option in rabbitmq.config).

User

RabbitMQ default user (default_user configuration option in rabbitmq.config).
11.3.1 HA Setup for RabbitMQ

To make RabbitMQ highly available, deploy it on a cluster instead of a single Control Node. This also requires shared storage for the cluster that hosts the RabbitMQ data. To achieve this, either set up a cluster with DRBD support (see Section 11.1, “Deploying Pacemaker (Optional, HA Setup Only)”) or use “traditional” shared storage like an NFS share. We recommend using a dedicated cluster to deploy RabbitMQ together with the database, since both components require shared storage.
Deploying RabbitMQ on a cluster makes an additional High Availability section available in the Attributes section of the proposal. Configure the Storage Mode in this section. There are two options:

**DRBD**
This option requires a two-node cluster that has been set up with DRBD. Also specify the Size to Allocate for DRBD Device (in Gigabytes). The suggested value of 50 GB should be sufficient.

**Shared Storage**
Use a shared block device or an NFS mount for shared storage. Concordantly with the mount command, you need to specify three attributes: Name of Block Device or NFS Mount Specification (the mount point), the Filesystem Type, and the Mount Options.

![Important: NFS Export Options for Shared Storage](https://example.com)

An NFS share for use as a shared storage for a cluster needs to be exported on the NFS server with the following options:

`rw,async,insecure,no_subtree_check,no_root_squash`

If mounting the NFS share on the cluster nodes fails, change the export options and re-apply the proposal. Before doing so, however, you need to clean up the respective resources on the cluster nodes as described in [http://www.suse.com/documentation/sle-ha-12/book_sleha/data/sec_ha_config_crm.html#sec_ha_manual_config_cleanup](http://www.suse.com/documentation/sle-ha-12/book_sleha/data/sec_ha_config_crm.html#sec_ha_manual_config_cleanup).

### 11.3.2 SSL Configuration for RabbitMQ

The RabbitMQ barclamp supports securing traffic via SSL. This is similar to the SSL support in other barclamps, but with these differences:

- RabbitMQ can listen on two ports at the same time, typically port 5672 for unsecured and port 5671 for secured traffic.
- The Ceilometer pipeline for OpenStack Swift cannot be passed SSL-related parameters. When SSL is enabled for RabbitMQ the Ceilometer pipeline in Swift is turned off, rather than sending it over an unsecured channel.

The following steps are the fastest way to set up and test a new SSL certificate authority (CA).
1. In the RabbitMQ barclamp set *Enable SSL* to *true*, and *Generate (self-signed) certificates (implies insecure)* to *true*, then apply the barclamp. The barclamp will create a new CA, enter the correct settings in `/etc/rabbitmq/rabbitmq.config`, and start RabbitMQ.

2. Test your new CA with OpenSSL, substituting the hostname of your control node:

   ```
   openssl s_client -connect d52-54-00-59-e5-fd:5671
   [...] Verify return code: 18 (self signed certificate)
   ```

   This outputs a lot of information, including a copy of the server's public certificate, protocols, ciphers, and the chain of trust.

3. The last step is to configure client services to use SSL to access the RabbitMQ service. (See https://docs.openstack.org/developer/oslo.messaging/newton/opts.html#oslo-messaging-rabbit for a complete reference).

   It is preferable to set up your own CA. The best practice is to use a commercial certificate authority. You may also deploy your own self-signed certificates, provided that your cloud is not publicly-accessible, and only for your internal use. Follow these steps to enable your own CA in RabbitMQ and deploy it to SUSE OpenStack Cloud:

   - Configure the RabbitMQ barclamp to use the control node’s certificate authority (CA), if it already has one, or create a CA specifically for RabbitMQ and configure the barclamp to use that. (See *Section 2.3, “SSL Encryption”,* and the RabbitMQ manual has a detailed howto on creating your CA at http://www.rabbitmq.com/ssl.html, with customizations for .NET and Java clients.)
SSL Support

Enable SSL
- True

SSL Port
- 5671

Generate (self-signed) certificates (implies insecure)
- false

SSL Certificate File
- /etc/rabbitmq/ssl/cacert.pem

SSL (Private) Key File
- /etc/rabbitmq/server/key.pem

Require Client Certificate
- false

SSL CA Certificates File
- /etc/rabbitmq/ssl/certs/ca.pem

SSL Certificate is insecure (for instance, self-signed)
- false

SSL client CA file (used to validate rabbitmq server certificate)
- /etc/rabbitmq/client/key.pem

FIGURE 11.5: SSL SETTINGS FOR RABBITMQ BARCLAMP

The configuration options in the RabbitMQ barclamp allow tailoring the barclamp to your SSL setup.

**Enable SSL**

Set this to *True* to expose all of your configuration options.

**SSL Port**

RabbitMQ's SSL listening port. The default is 5671.
Generate (self-signed) certificates (implies insecure)
When this is set to **true**, self-signed certificates are automatically generated and copied to the correct locations on the control node, and all other barclamp options are set automatically. This is the fastest way to apply and test the barclamp. Do not use this on production systems. When this is set to **false** the remaining options are exposed.

**SSL Certificate File**
The location of your public root CA certificate.

**SSL (Private) Key File**
The location of your private server key.

**Require Client Certificate**
This goes with **SSL CA Certificates File**. Set to **true** to require clients to present SSL certificates to RabbitMQ.

**SSL CA Certificates File**
Trust client certificates presented by the clients that are signed by other CAs. You'll need to store copies of the CA certificates; see "Trust the Client's Root CA" at [http://www.rabbitmq.com/ssl.html](http://www.rabbitmq.com/ssl.html).

**SSL Certificate is insecure (for instance, self-signed)**
When this is set to **false**, clients validate the RabbitMQ server certificate with the **SSL client CA file**.

**SSL client CA file (used to validate rabbitmq server certificate)**
Tells clients of RabbitMQ where to find the CA bundle that validates the certificate presented by the RabbitMQ server, when **SSL Certificate is insecure (for instance, self-signed)** is set to **false**.
11.4 Deploying Keystone

Keystone is another core component that is used by all other OpenStack components. It provides authentication and authorization services. Keystone needs to be installed on a Control Node. Keystone can be made highly available by deploying it on a cluster. You can configure the following parameters of this barclamp:

**Algorithm for Token Generation**
Set the algorithm used by Keystone to generate the tokens. You can choose between Fernet (the default) or UUID. Note that for performance and security reasons it is strongly recommended to use Fernet.

**Region Name**
Allows customizing the region name that crowbar is going to manage.

**Default Credentials: Default Tenant**
Tenant for the users. Do not change the default value of openstack.

**Default Credentials: Administrator User Name/Password**
User name and password for the administrator.

**Default Credentials: Create Regular User**
Specify whether a regular user should be created automatically. Not recommended in most scenarios, especially in an LDAP environment.

**Default Credentials: Regular User Username/Password**
User name and password for the regular user. Both the regular user and the administrator accounts can be used to log in to the SUSE OpenStack Cloud Dashboard. However, only the administrator can manage Keystone users and access.
SSL Support: Protocol

When you use the default value **HTTP**, public communication will not be encrypted. Choose **HTTPS** to use SSL for encryption. See *Section 2.3, “SSL Encryption”* for background information and *Section 10.4.6, “Enabling SSL”* for installation instructions. The following additional configuration options will become available when choosing **HTTPS**:

**Generate (self-signed) certificates**

When set to `true`, self-signed certificates are automatically generated and copied to the correct locations. This setting is for testing purposes only and should never be used in production environments!
**SSL Certificate File / SSL (Private) Key File**

Location of the certificate key pair files.

**SSL Certificate is insecure**

Set this option to `true` when using self-signed certificates to disable certificate checks. This setting is for testing purposes only and should never be used in production environments!

**SSL CA Certificates File**

Specify the absolute path to the CA certificate. This field is mandatory, and leaving it blank will cause the barclamp to fail. To fix this issue, you have to provide the absolute path to the CA certificate, restart the `apache2` service, and re-deploy the barclamp.

When the certificate is not already trusted by the pre-installed list of trusted root certificate authorities, you need to provide a certificate bundle that includes the root and all intermediate CAs.

![SSL Support Table](image)

**FIGURE 11.7: THE SSL DIALOG**

### 11.4.1 Authenticating with LDAP

SUSE OpenStack Cloud 6 used a custom hybrid Keystone driver to support authenticating users (e.g. the admin user or service users) from both database back-ends and from LDAP servers. Upstream Keystone now has the ability to separate identity backends by domains. SUSE OpenStack Cloud 7 uses the upstream method, and has dropped the hybrid driver.
The Keystone barclamp sets up a PostgreSQL database by default. Configuring an LDAP back-end is done in the Raw view.

1. Set "domain_specific_drivers": true,

2. Then in the "domain_specific_config": section configure a map with domain names as keys, and configuration as values. In the default proposal the domain name key is "ldap_users", and the keys are the two required sections for an LDAP-based identity driver configuration, the [identity] section which sets the driver, and the [ldap] section which sets the LDAP connection options. You may configure multiple domains, each with its own configuration.

You may make this available to Horizon by setting multi_domain_support to true in the Horizon barclamp.

Users in the LDAP-backed domain have to know the name of the domain in order to authenticate, and must use the Keystone v3 API endpoint. (See the OpenStack manuals, Domain-specific Configuration (https://docs.openstack.org/keystone/latest/admin/identity-domain-specific-config.html) and Integrate Identity with LDAP (https://docs.openstack.org/keystone/latest/admin/identity-integrate-with-ldap.html), for additional details.)

11.4.2 HA Setup for Keystone

Making Keystone highly available requires no special configuration—it is sufficient to deploy it on a cluster.

11.5 Deploying Ceph (optional)

Ceph (http://ceph.com/) adds a redundant block storage service to SUSE OpenStack Cloud for storing persistent devices that can be mounted from instances. It offers high data security by storing the data redundantly on a pool of Storage Nodes. Therefore Ceph needs to be installed on at least three dedicated nodes. All Ceph nodes need to run SLES 12. For detailed information on how to provide the required repositories, refer to Section 5.2, “Update and Pool Repositories”. If you are deploying the optional Calamari server for Ceph management and monitoring, an additional node is required.
Tip: SUSE Enterprise Storage

SUSE Enterprise Storage is a robust cluster solution based on Ceph. Refer to [https://www.suse.com/documentation/ses-4/](https://www.suse.com/documentation/ses-4/) for more information.

Important: Changing Ceph Client Network

With Ceph clusters, we recommend to have a separate public and cluster networks. Ceph's cluster network is where internal cluster processes occur, for example data replication. Ceph's public network is the network on which all client traffic occurs.

Since SUSE OpenStack Cloud 7, the Ceph client network defaults to Crowbar's 'public' network, while the cluster network remains on Crowbar's 'storage' network. If you need to change the default client network name, open the Ceph barclamp configuration in a Raw mode before first applying the Ceph proposal, and change the `client_network` attribute to match the name of your preferred network.

The Ceph barclamp has the following configuration options:

*Disk Selection Method*

Choose whether to only use the first available disk or all available disks. “Available disks” are all disks currently not used by the system. Note that one disk (usually `/dev/sda`) of every block storage node is already used for the operating system and is not available for Ceph.

*Number of Replicas of an Object*

For data security, stored objects are not only stored once, but redundantly. Specify the number of copies that should be stored for each object with this setting. The number includes the object itself. For example, if you want the object plus two copies, specify 3. However, note that the number cannot be higher than the number of available hard disks.

*SSL Support for RadosGW*

Choose whether to encrypt public communication (HTTPS) or not (HTTP). If you choose HTTPS, you need to specify the locations for the certificate key pair files. Note that both trusted and self-signed certificates are accepted.
**Calamari Credentials**

Calamari is a Web front-end for managing and analyzing the Ceph cluster. Provide administrator credentials (user name, password, e-mail address) in this section. When Ceph has been deployed you can log in to Calamari with these credentials. Deploying Calamari is optional—leave these text boxes empty when not deploying Calamari.

![Calamari Credentials](image)

**FIGURE 11.8: THE CEPH BARCLAMP**

The Ceph component consists of the following different roles:

---

**Important: Dedicated Nodes**

We do not recommend sharing one node by multiple Ceph components at the same time. For example, running a `ceph-mon` service on the same node as `ceph-osd` degrades the performance of all services hosted on the shared node. This also applies to other services, such as Calamari or RADOS Gateway.

---

**ceph-osd**

The virtual block storage service. Install this role on all dedicated Ceph Storage Nodes (at least three).
**ceph-mon**

Cluster monitor daemon for managing the storage map of the Ceph cluster. **ceph-mon** needs to be installed on at least three nodes.

**ceph-calamarı**

Sets up the Calamari Web interface for managing the Ceph cluster. Deploying it is optional. The Web interface can be accessed via http://**IP-ADDRESS**/, where **IP-ADDRESS** is the address of the machine where **ceph-calamarı** is deployed.

**ceph-radosgw**


⚠️ **Tip: RADOS Gateway HA Setup**

If you need to set up more RADOS Gateways (and thus create a backup instance in case one RADOS Gateway node fails), set up RADOS Gateway on multiple nodes and put an HTTP load balancer in front of them. You can choose your preferred balancing solution, or use SUSE Linux Enterprise HA extension (refer to [https://www.suse.com/documentation/sle-ha-12/](https://www.suse.com/documentation/sle-ha-12/)).

**ceph-mds**

The metadata server for the CephFS distributed file system. Install this role on one to three nodes to enable CephFS. A file system named **cephfs** will automatically be created, along with **cephfs_metadata** and **cephfs_data** pools. Refer to [https://www.suse.com/documentation/ses-4/book_storage_admin/data/cha_ceph_cephfs.html](https://www.suse.com/documentation/ses-4/book_storage_admin/data/cha_ceph_cephfs.html) for more details.

🚨 **Important: Use Dedicated Nodes**

Never deploy Ceph on a node that runs non-Ceph OpenStack components. The only services that may be deployed together on a Ceph node are **ceph-osd**, **ceph-mon**, and **ceph-radosgw**. However, we recommend running each Ceph service on a dedicated host for performance reasons. All Ceph nodes need to run SLES 12.
11.5.1 **HA Setup for Ceph**

Ceph is HA-enabled by design, so there is no need for a special HA setup.

11.6 **Deploying Swift (optional)**

Swift adds an object storage service to SUSE OpenStack Cloud for storing single files such as images or snapshots. It offers high data security by storing the data redundantly on a pool of Storage Nodes—therefore Swift needs to be installed on at least two dedicated nodes.

To properly configure Swift it is important to understand how it places the data. Data is always stored redundantly within the hierarchy. The Swift hierarchy in SUSE OpenStack Cloud is formed out of zones, nodes, hard disks, and logical partitions. Zones are physically separated clusters, for example different server rooms each with its own power supply and network segment. A failure of one zone must not affect another zone. The next level in the hierarchy are the individual Swift storage nodes (on which *swift-storage* has been deployed), followed by the hard disks. Logical partitions come last.
Swift automatically places three copies of each object on the highest hierarchy level possible. If three zones are available, then each copy of the object will be placed in a different zone. In a one zone setup with more than two nodes, the object copies will each be stored on a different node. In a one zone setup with two nodes, the copies will be distributed on different hard disks. If no other hierarchy element fits, logical partitions are used.

The following attributes can be set to configure Swift:

**Allow Public Containers**
Set to `true` to enable public access to containers.

**Enable Object Versioning**
If set to true, a copy of the current version is archived each time an object is updated.

**Zones**
Number of zones (see above). If you do not have different independent installations of storage nodes, set the number of zones to 1.

**Create $2^X$ Logical Partitions**
Partition power. The number entered here is used to compute the number of logical partitions to be created in the cluster. The number you enter is used as a power of 2 ($2^X$). We recommend using a minimum of 100 partitions per disk. To measure the partition power for your setup, multiply the number of disks from all Swift nodes by 100, and then round up to the nearest power of two. Keep in mind that the first disk of each node is not used by Swift, but rather for the operating system.

**Example:** 10 Swift nodes with 5 hard disks each. Four hard disks on each node are used for Swift, so there is a total of forty disks. $40 \times 100 = 4000$. The nearest power of two, 4096, equals $2^{12}$. So the partition power that needs to be entered is $12$.

⚠️ **Important: Value Cannot be Changed After the Proposal Has Been Deployed**
Changing the number of logical partition after Swift has been deployed is not supported. Therefore the value for the partition power should be calculated from the maximum number of partitions this cloud installation is likely going to need at any point in time.
Minimum Hours before Partition is reassigned

This option sets the number of hours before a logical partition is considered for relocation. 24 is the recommended value.

Replicas

The number of copies generated for each object. The number of replicas depends on the number of disks and zones.

Replication interval (in seconds)

Time (in seconds) after which to start a new replication process.

Debug

Shows debugging output in the log files when set to true.

SSL Support: Protocol

Choose whether to encrypt public communication (HTTPS) or not (HTTP). If you choose HTTPS, you have two options. You can either Generate (self-signed) certificates or provide the locations for the certificate key pair files. Using self-signed certificates is for testing purposes only and should never be used in production environments!
Apart from the general configuration described above, the Swift barclamp lets you also activate and configure *Additional Middlewares*. The features these middlewares provide can be used via the Swift command line client only. The Ratelimit and S3 middleware provide for the most interesting features, and we recommend enabling other middleware only for specific use-cases.

**S3 Middleware**

Provides an S3 compatible API on top of Swift.

**StaticWeb**

Serve container data as a static Web site with an index file and optional file listings. See http://docs.openstack.org/developer/swift/middleware.html#staticweb for details. This middleware requires setting *Allow Public Containers* to `true`.

**TempURL**

Create URLs to provide time-limited access to objects. See http://docs.openstack.org/developer/swift/middleware.html#tempurl for details.
**FormPOST**

Upload files to a container via Web form. See [http://docs.openstack.org/developer/swift/middleware.html#formpost](http://docs.openstack.org/developer/swift/middleware.html#formpost) for details.

**Bulk**

Extract TAR archives into a Swift account, and delete multiple objects or containers with a single request. See [http://docs.openstack.org/developer/swift/middleware.html#module-swift.common.middleware.bulk](http://docs.openstack.org/developer/swift/middleware.html#module-swift.common.middleware.bulk) for details.

**Cross-domain**

Interact with the Swift API via Flash, Java, and Silverlight from an external network. See [http://docs.openstack.org/developer/swift/middleware.html#module-swift.common.middleware.crossdomain](http://docs.openstack.org/developer/swift/middleware.html#module-swift.common.middleware.crossdomain) for details.

**Domain Remap**

Translates container and account parts of a domain to path parameters that the Swift proxy server understands. Can be used to create short URLs that are easy to remember, for example by rewriting `home.tux.example.com/$ROOT/tux/home/myfile` to `home.tux.example.com/myfile`. See [http://docs.openstack.org/developer/swift/middleware.html#module-swift.common.middleware.domain_remap](http://docs.openstack.org/developer/swift/middleware.html#module-swift.common.middleware.domain_remap) for details.

**Ratelimit**

Throttle resources such as requests per minute to provide denial of service protection. See [http://docs.openstack.org/developer/swift/middleware.html#module-swift.common.middleware.ratelimit](http://docs.openstack.org/developer/swift/middleware.html#module-swift.common.middleware.ratelimit) for details.

The Swift component consists of four different roles. Deploying `swift-dispersion` is optional:

**swift-storage**

The virtual object storage service. Install this role on all dedicated Swift Storage Nodes (at least two), but not on any other node.

**Warning: swift-storage Needs Dedicated Machines**

Never install the swift-storage service on a node that runs other OpenStack components.
**swift-ring-compute**

The ring maintains the information about the location of objects, replicas, and devices. It can be compared to an index that is used by various OpenStack components to look up the physical location of objects. **swift-ring-compute** must only be installed on a single node, preferably a Control Node.

**swift-proxy**

The Swift proxy server takes care of routing requests to Swift. Installing a single instance of **swift-proxy** on a Control Node is recommended. The **swift-proxy** role can be made highly available by deploying it on a cluster.

**swift-dispersion**

Deploying **swift-dispersion** is optional. The Swift dispersion tools can be used to test the health of the cluster. It creates a heap of dummy objects (using 1% of the total space available). The state of these objects can be queried using the swift-dispersion-report query. **swift-dispersion** needs to be installed on a Control Node.

**FIGURE 11.11: THE SWIFT BARCLAMP: NODE DEPLOYMENT EXAMPLE**
11.6.1 HA Setup for Swift

Swift replicates by design, so there is no need for a special HA setup. Make sure to fulfill the requirements listed in Section 2.6.4.1, “Swift—Avoiding Points of Failure”.

11.7 Deploying Glance

Glance provides discovery, registration, and delivery services for virtual disk images. An image is needed to start an instance—it is its pre-installed root-partition. All images you want to use in your cloud to boot instances from, are provided by Glance. Glance must be deployed onto a Control Node. Glance can be made highly available by deploying it on a cluster.

There are a lot of options to configure Glance. The most important ones are explained below—for a complete reference refer to http://github.com/crowbar/crowbar/wiki/Glance--barclamp.

⚠️ Important: Glance API Versions

As of SUSE OpenStack Cloud 7, the Glance API v1 is no longer enabled by default. Instead, Glance API v2 is used by default.

If you need to re-enable API v1 for compatibility reasons:


2. Search for the `enable_v1` entry and set it to `true`:

   "enable_v1": true

   In new installations, this entry is set to `false` by default. When upgrading from an older version of SUSE OpenStack Cloud it is set to `true` by default.

3. Apply your changes.

*Image Storage: Default Storage Store*

*File.* Images are stored in an image file on the Control Node.

*Cinder.* Use Swift for image storage. This option is included as a technology preview and is not supported by SUSE.
**Swift.** Use Glance for image storage. If you have deployed Glance, using it for image storage is recommended.

**Ceph.** Use Ceph for image storage. If you have deployed Ceph, using it for image storage is recommended.

**VMWare.** If you are using VMware as a hypervisor, it is recommended to use VMWare for storing images. This will make starting VMware instances much faster.

**Expose Backend Store Location.** If this is set to true, the API will communicate the direct URL of the image's back-end location to HTTP clients. Set to false by default. Depending on the storage back-end, there are additional configuration options available:

**File Store Parameters**

Only required if Default Storage Store is set to File.

**Image Store Directory**

Specify the directory to host the image file. The directory specified here can also be an NFS share. See Section 10.4.3, “Mounting NFS Shares on a Node” for more information.

**Swift Store Parameters**

Only required if Default Storage Store is set to Swift.

**Swift Container**

Set the name of the container to use for the images in Swift.

**RADOS Store Parameters**

Only required if Default Storage Store is set to Rados.

**RADOS User for CephX Authentication**

If you are using a SUSE OpenStack Cloud internal Ceph setup, the user you specify here is created if it does not exist. If you are using an external Ceph cluster, specify the user you have set up for Glance (see Section 10.4.4, “Using an Externally Managed Ceph Cluster” for more information).
RADOS Pool for Glance images

If you are using a SUSE OpenStack Cloud internal Ceph setup, the pool you specify here is created if it does not exist. If you are using an external Ceph cluster, specify the pool you have set up for Glance (see Section 10.4.4, “Using an Externally Managed Ceph Cluster” for more information).

VMWare Store Parameters

Only required if Default Storage Store is set to VMWare.

vCenter Host/IP Address

Name or IP address of the vCenter server.

vCenter Username / vCenter Password

vCenter login credentials.

Datastores for Storing Images

A comma-separated list of datastores specified in the format: DATACENTER_NAME:DATASTORE_NAME

Path on the datastore, where the glance images will be stored

Specify an absolute path here.

SSL Support: Protocol

Choose whether to encrypt public communication (HTTPS) or not (HTTP). If you choose HTTPS, refer to SSL Support: Protocol for configuration details.

Caching

Enable and configure image caching in this section. By default, image caching is disabled. You can see this the Raw view of your Nova barclamp:

```
image_cache_manager_interval = -1
```

This option sets the number of seconds to wait between runs of the image cache manager. Disabling it means that the cache manager will not automatically remove the unused images from the cache, so if you have many Glance images and are running out of storage you must manually remove the unused images from the cache. We recommend leaving this option disabled as it is known to cause issues, especially with shared storage. The cache manager may remove images still in use, e.g. when network outages cause synchronization problems with compute nodes.
If you wish to enable caching, re-enable it in a custom Nova configuration file, for example 
/etc/nova/nova.conf.d/100-nova.conf. This sets the the interval to four minutes:

```
image_cache_manager_interval = 2400
```

See Chapter 13, Configuration Files for OpenStack Services for more information on custom configurations.

Learn more about Glance's caching feature at http://docs.openstack.org/developer/glance/cache.html.

**Logging: Verbose Logging**

Shows debugging output in the log files when set to `true`.

---

**FIGURE 11.12: THE GLANCE BARCLAMP**
11.7.1 HA Setup for Glance

Glance can be made highly available by deploying it on a cluster. We strongly recommended doing this for the image data as well. The recommended way is to use Swift or an external Ceph cluster for the image repository. If you are using a directory on the node instead (file storage back-end), you should set up shared storage on the cluster for it.

11.8 Deploying Cinder

Cinder, the successor of Nova Volume, provides volume block storage. It adds persistent storage to an instance that will persist until deleted, contrary to ephemeral volumes that only persist while the instance is running.

Cinder can provide volume storage by using different back-ends such as local file, one or more local disks, Ceph (RADOS), VMware, or network storage solutions from EMC, EqualLogic, Fujitsu, or NetApp. Since SUSE OpenStack Cloud 5, Cinder supports using several back-ends simultaneously. It is also possible to deploy the same network storage back-end multiple times and therefore use different installations at the same time.

The attributes that can be set to configure Cinder depend on the back-end. The only general option is SSL Support: Protocol (see SSL Support: Protocol for configuration details).

Tip: Adding or Changing a Back-End

When first opening the Cinder barclamp, the default proposal—Raw Devices—is already available for configuration. To optionally add a back-end, go to the section Add New Cinder Back-End and choose a Type Of Volume from the drop-down box. Optionally, specify the Name for the Backend. This is recommended when deploying the same volume type more than once. Existing back-end configurations (including the default one) can be deleted by clicking the trashcan icon if no longer needed. Note that you must configure at least one back-end.
**Raw devices (local disks)**

**Disk Selection Method**
Choose whether to use the *First Available* disk or *All Available* disks. “Available disks” are all disks currently not used by the system. Note that one disk (usually `/dev/sda`) of every block storage node is already used for the operating system and is not available for Cinder.

**Name of Volume**
Specify a name for the Cinder volume.

**EMC (EMC² Storage)**

**IP address of the ECOM server / Port of the ECOM server**
IP address and Port of the ECOM server.

**Username for accessing the ECOM server / Password for accessing the ECOM server**
Login credentials for the ECOM server.

**VMAX port groups to expose volumes managed by this backend**
VMAX port groups that expose volumes managed by this back-end.

**Serial number of the VMAX Array**
Unique VMAX array serial number.

**Pool name within a given array**
Unique pool name within a given array.

**FAST Policy name to be used**
Name of the FAST Policy to be used. When specified, volumes managed by this back-end are managed as under FAST control.

For more information on the EMC driver refer to the OpenStack documentation at [http://docs.openstack.org/liberty/config-reference/content/emc-vmax-driver.html](http://docs.openstack.org/liberty/config-reference/content/emc-vmax-driver.html).

**EqualLogic**

EqualLogic drivers are included as a technology preview and are not supported.
**Fujitsu ETERNUS DX**

*Connection Protocol*
Select the protocol used to connect, either *FibreChannel* or *iSCSI*.

*IP for SMI-S / Port for SMI-S*
IP address and port of the ETERNUS SMI-S Server.

*Username for SMI-S / Password for SMI-S*
Login credentials for the ETERNUS SMI-S Server.

*Snapshot (Thick/RAID Group) Pool Name*
Storage pool (RAID group) in which the volumes are created. Make sure that the RAID group on the server has already been created. If a RAID group that does not exist is specified, the RAID group is built from unused disk drives. The RAID level is automatically determined by the ETERNUS DX Disk storage system.

**Hitachi HUSVM**

For information on configuring the Hitachi HUSVM back-end, refer to [http://docs.openstack.org/newton/config-reference/block-storage/drivers/hitachi-storage-volume-driver.html](http://docs.openstack.org/newton/config-reference/block-storage/drivers/hitachi-storage-volume-driver.html).

**NetApp**

*Storage Family Type / Storage Protocol*
SUSE OpenStack Cloud can use “Data ONTAP” in 7-Mode, or in *Clustered Mode*. In 7-Mode vFiler will be configured, in *Clustered Mode* vServer will be configured. The *Storage Protocol* can be set to either *iSCSI* or *NFS*. Choose the driver and the protocol your NetApp is licensed for.

*Server host name*
The management IP address for the 7-Mode storage controller, or the cluster management IP address for the clustered Data ONTAP.

*Transport Type*
Transport protocol for communicating with the storage controller or clustered Data ONTAP. Supported protocols are HTTP and HTTPS. Choose the protocol your NetApp is licensed for.
Server port

The port to use for communication. Port 80 is usually used for HTTP, 443 for HTTPS.

Username for accessing NetApp / Password for Accessing NetApp

Login credentials.

The vFiler Unit Name for provisioning OpenStack volumes (netapp_vfiler)

The vFiler unit to be used for provisioning of OpenStack volumes. This setting is only available in 7-Mode.

Restrict provisioning on iSCSI to these volumes (netapp_volume_list)

Provide a list of comma-separated volume names to be used for provisioning. This setting is only available when using iSCSI as storage protocol.

NFS

List of NFS Exports

A list of available file systems on an NFS server. Enter your NFS mountpoints in the List of NFS Exports form in this format: host:mountpoint -o options. For example:

```
host1:/srv/nfs/share1 /mnt/nfs/share1 -o rsize=8192,wsize=8192,timeo=14,intr
```

RADOS (Ceph)

Use Ceph Deployed by Crowbar

Select true if you have deployed Ceph with SUSE OpenStack Cloud. If you are using an external Ceph cluster (see Section 10.4.4, “Using an Externally Managed Ceph Cluster” for setup instructions), select false.

RADOS pool for Cinder volumes

Name of the pool used to store the Cinder volumes.

RADOS user (Set Only if Using CephX authentication)

Ceph user name.
VMware Parameters

vCenter Host/IP Address
Host name or IP address of the vCenter server.

vCenter Username / vCenter Password
vCenter login credentials.

vCenter Cluster Names for Volumes
Provide a comma-separated list of cluster names.

Folder for Volumes
Path to the directory used to store the Cinder volumes.

CA file for verifying the vCenter certificate
Absolute path to the vCenter CA certificate.

vCenter SSL Certificate is insecure (for instance, self-signed)
Default value: false (the CA truststore is used for verification). Set this option to true when using self-signed certificates to disable certificate checks. This setting is for testing purposes only and must not be used in production environments!

Local file

Volume File Name
Absolute path to the file to be used for block storage.

Maximum File Size (GB)
Maximum size of the volume file. Make sure not to overcommit the size, since it will result in data loss.

Name of Volume
Specify a name for the Cinder volume.

Note: Using Local File for Block Storage
Using a file for block storage is not recommended for production systems, because of performance and data security reasons.
**Other driver**

Lets you manually pick and configure a driver. Only use this option for testing purposes, as it is not supported.

![Cinder Barclamp](image)

**FIGURE 11.13: THE CINDER BARCLAMP**

The Cinder component consists of two different roles:

**cinder-controller**

The Cinder controller provides the scheduler and the API. Installing *cinder-controller* on a Control Node is recommended.

**cinder-volume**

The virtual block storage service. It can be installed on a Control Node. However, we recommend deploying it on one or more dedicated nodes supplied with sufficient networking capacity to handle the increase in network traffic.
11.8.1 HA Setup for Cinder

Both the cinder-controller and the cinder-volume role can be deployed on a cluster.

Note: Moving cinder-volume to a Cluster

If you need to re-deploy cinder-volume role from a single machine to a cluster environment, the following will happen: Volumes that are currently attached to instances will continue to work, but adding volumes to instances will not succeed.

To solve this issue, run the following script once on each node that belongs to the cinder-volume cluster: `/usr/bin/cinder-migrate-volume-names-to-cluster`.

The script is automatically installed by Crowbar on every machine or cluster that has a cinder-volume role applied to it.
In combination with Ceph or a network storage solution, deploying Cinder in a cluster minimizes the potential downtime. If using Ceph or a network storage is not an option, you need to set up a shared storage directory (for example, with NFS), mount it on all cinder volume nodes, and use the Local File back-end with this shared directory. Using Raw Devices is not an option, since local disks cannot be shared.

11.9 Deploying Neutron

Neutron provides network connectivity between interface devices managed by other OpenStack components (most likely Nova). The service works by enabling users to create their own networks and then attach interfaces to them.

Neutron must be deployed on a Control Node. You first need to choose a core plug-in—ml2 or vmware. Depending on your choice, more configuration options will become available.

The vmware option lets you use an existing VMWare NSX installation. Using this plugin is not a prerequisite for the VMWare vSphere hypervisor support. However, it is needed when wanting to have security groups supported on VMWare compute nodes. For all other scenarios, choose ml2.

The only global option that can be configured is SSL Support. Choose whether to encrypt public communication (HTTPS) or not (HTTP). If choosing HTTPS, refer to SSL Support: Protocol for configuration details.

ml2 (Modular Layer 2)

Modular Layer 2 Mechanism Drivers

Select which mechanism driver(s) shall be enabled for the ml2 plugin. It is possible to select more than one driver by holding the Ctrl key while clicking. Choices are:

openvswitch. Supports GRE, VLAN and VLANX networks (to be configured via the Modular Layer 2 type drivers setting).

linuxbridge. Supports VLANs only. Requires to specify the Maximum Number of VLANs.

cisco_nexus. Enables Neutron to dynamically adjust the VLAN settings of the ports of an existing Cisco Nexus switch when instances are launched. It also requires openvswitch which will automatically be selected. With Modular Layer 2 type drivers, vlan must be added. This option also requires to specify the Cisco Switch Credentials. See Appendix B, Using Cisco Nexus Switches with Neutron for details.
**Use Distributed Virtual Router Setup**

With the default setup, all intra-Compute Node traffic flows through the network Control Node. The same is true for all traffic from floating IPs. In large deployments the network Control Node can therefore quickly become a bottleneck. When this option is set to true, network agents will be installed on all compute nodes. This will de-centralize the network traffic, since Compute Nodes will be able to directly “talk” to each other. Distributed Virtual Routers (DVR) require the openvswitch driver and will not work with the linuxbridge driver. HyperV Compute Nodes will not be supported—network traffic for these nodes will be routed via the Control Node on which neutron-network is deployed. For details on DVR refer to [https://wiki.openstack.org/wiki/Neutron/DVR](https://wiki.openstack.org/wiki/Neutron/DVR).

**Modular Layer 2 Type Drivers**

This option is only available when having chosen the openvswitch or the cisco_nexus mechanism drivers. Options are vlan, gre and vxlan. It is possible to select more than one driver by holding the Ctrl key while clicking. When multiple type drivers are enabled, you need to select the Default Type Driver for Provider Network, that will be used for newly created provider networks. This also includes the nova_fixed network, that will be created when applying the Neutron proposal. When manually creating provider networks with the neutron command, the default can be overwritten with the --provider:network_type type switch. You will also need to set a Default Type Driver for Tenant Network. It is not possible to change this default when manually creating tenant networks with the neutron command. The non-default type driver will only be used as a fallback.

Depending on your choice of the type driver, more configuration options become available.

**gre.** Having chosen gre, you also need to specify the start and end of the tunnel ID range.

**vlan.** The option vlan requires you to specify the Maximum number of VLANs.

**vxlan.** Having chosen vxlan, you also need to specify the start and end of the VNI range.

**Important: Drivers for HyperV Compute Nodes**

HyperV Compute Nodes do not support gre and vxlan. If your environment includes a heterogeneous mix of Compute Nodes including HyperV nodes, make sure to select vlan. This can be done in addition to the other drivers.
Important: Drivers for the VMware Compute Node

Neutron must not be deployed with the `openvswitch with gre` plug-in. See Appendix A, VMware vSphere Installation Instructions for details.

**z/VM Configuration**

**xCAT Host/IP Address**

Host name or IP address of the xCAT Management Node.

**xCAT Username/Password**

xCAT login credentials.

**rdev list for physnet1 vswitch uplink (if available)**

List of rdev addresses that should be connected to this vswitch.

**xCAT IP Address on Management Network**

IP address of the xCAT management interface.

**Net Mask of Management Network**

Net mask of the xCAT management interface.

**vmware**

This plug-in requires to configure access to the VMWare NSX service.

**VMWare NSX User Name/Password**

Login credentials for the VMWare NSX server. The user needs to have administrator permissions on the NSX server.

**VMWare NSX Controllers**

Enter the IP address and the port number (`IP-ADDRESS: PORT`) of the controller API endpoint. If the port number is omitted, port 443 will be used. You may also enter multiple API endpoints (comma-separated), provided they all belong to the same controller cluster. When multiple API endpoints are specified, the plugin will load balance requests on the various API endpoints.
UUID of the NSX Transport Zone/Gateway Service

The UUIDs for the transport zone and the gateway service can be obtained from the NSX server. They will be used when networks are created.

![Neutron Barclamp](image)

FIGURE 11.15: THE NEUTRON BARCLAMP

The Neutron component consists of two different roles:

- **neutron-server**
  
  *neutron-server* provides the scheduler and the API. It needs to be installed on a Control Node.

- **neutron-network**
  
  This service runs the various agents that manage the network traffic of all the cloud instances. It acts as the DHCP and DNS server and as a gateway for all cloud instances. It is recommend to deploy this role on a dedicated node supplied with sufficient network capacity.
11.9.1 Using Infoblox IPAM Plug-in

In the Neutron barclamp, you can enable support for the infoblox IPAM plug-in and configure it. For configuration, the `infoblox` section contains the subsections `grids` and `grid_defaults`.

**grids**

This subsection must contain at least one entry. For each entry, the following parameters are required:

- `admin_user_name`
- `admin_password`
- `grid_master_host`
- `grid_master_name`
- `data_center_name`

You can also add multiple entries to the `grids` section. However, the upstream infoblox agent only supports a single grid currently.
grid_defaults

This subsection contains the default settings that are used for each grid (unless you have configured specific settings within the grids section).

For detailed information on all infoblox-related configuration settings, see [https://github.com/openstack/networking-infoblox/blob/master/doc/source/installation.rst](https://github.com/openstack/networking-infoblox/blob/master/doc/source/installation.rst).

Currently, all configuration options for infoblox are only available in the raw mode of the Neutron barclamp. To enable support for the infoblox IPAM plug-in and configure it, proceed as follows:

1. Edit the Neutron barclamp proposal or create a new one.

2. Click Raw and search for the following section:

   ```json
   "use_infoblox": false,
   ```

3. To enable support for the infoblox IPAM plug-in, change this entry to:

   ```json
   "use_infoblox": true,
   ```

4. In the grids section, configure at least one grid by replacing the example values for each parameter with real values.

5. If you need specific settings for a grid, add some of the parameters from the grid_defaults section to the respective grid entry and adjust their values.

   Otherwise Crowbar applies the default setting to each grid when you save the barclamp proposal.

6. Save your changes and apply them.

11.9.2 HA Setup for Neutron

Neutron can be made highly available by deploying neutron-server and neutron-network on a cluster. While neutron-server may be deployed on a cluster shared with other services, it is strongly recommended to use a dedicated cluster solely for the neutron-network role.
11.10 Deploying Nova

Nova provides key services for managing the SUSE OpenStack Cloud, sets up the Compute Nodes. SUSE OpenStack Cloud currently supports KVM, Xen and Microsoft Hyper V and VMWare vSphere. The unsupported QEMU option is included to enable test setups with virtualized nodes. The following attributes can be configured for Nova:

**Scheduler Options:** Virtual RAM to Physical RAM allocation ratio
Set the “overcommit ratio” for RAM for instances on the Compute Nodes. A ratio of 1.0 means no overcommitment. Changing this value is not recommended.

**Scheduler Options:** Virtual CPU to Physical CPU allocation ratio
Set the “overcommit ratio” for CPUs for instances on the Compute Nodes. A ratio of 1.0 means no overcommitment.

**Scheduler Options:** Virtual Disk to Physical Disk allocation ratio
Set the “overcommit ratio” for virtual disks for instances on the Compute Nodes. A ratio of 1.0 means no overcommitment.

**Scheduler Options:** Reserved Memory for Nova Compute hosts (MB)
Amount of reserved host memory that is not used for allocating VMs by Nova Compute.

**Live Migration Support:** Enable Libvirt Migration
Allows to move KVM and Xen instances to a different Compute Node running the same hypervisor (cross hypervisor migrations are not supported). Useful when a Compute Node needs to be shut down or rebooted for maintenance or when the load of the Compute Node is very high. Instances can be moved while running (Live Migration).

⚠️ **Warning:** Libvirt Migration and Security
Enabling the libvirt migration option will open a TCP port on the Compute Nodes that allows access to all instances from all machines in the admin network. Ensure that only authorized machines have access to the admin network when enabling this option.

**Live Migration Support:** Setup Shared Storage
Sets up a directory `/var/lib/nova/instances` on the Control Node on which `nova-controller` is running. This directory is exported via NFS to all compute nodes and will host a copy of the root disk of all Xen instances. This setup is required for live migration of
Xen instances (but not for KVM) and is used to provide central handling of instance data. Enabling this option is only recommended if Xen live migration is required—otherwise it should be disabled.

Warning: Do Not Set Up Shared Storage When instances are Running

Setting up shared storage in a SUSE OpenStack Cloud where instances are running will result in connection losses to all running instances. It is strongly recommended to set up shared storage when deploying SUSE OpenStack Cloud. If it needs to be done at a later stage, make sure to shut down all instances prior to the change.

KVM Options: Enable Kernel Samepage Merging

Kernel SamePage Merging (KSM) is a Linux Kernel feature which merges identical memory pages from multiple running processes into one memory region. Enabling it optimizes memory usage on the Compute Nodes when using the KVM hypervisor at the cost of slightly increasing CPU usage.

z/VM Configuration: xCAT Host/IP Address

IP address of the xCAT management interface.

z/VM Configuration: xCAT Username/Password

xCAT login credentials.

z/VM Configuration: z/VM disk pool for ephemeral disks

Name of the disk pool for ephemeral disks.

z/VM Configuration: z/VM disk pool type for ephemeral disks (ECKD or FBA)

Choose disk pool type for ephemeral disks.

z/VM Configuration: z/VM Host Managed By xCAT MN

z/VM host managed by xCAT Management Node.

z/VM Configuration: User profile for creating a z/VM userid

User profile to be used for creating a z/VM userid.

z/VM Configuration: Default zFCP SCSI Disk Pool

Default zFCP SCSI disk pool.

z/VM Configuration: The xCAT MN node name

Name of the xCAT Management Node.
**z/VM Configuration: The xCAT MN node public SSH key**

Public SSH key of the xCAT Management Node.

**VMware vCenter Settings**

Setting up VMware support is described in a separate section. See *Appendix A, VMware vSphere Installation Instructions*.

**SSL Support: Protocol**

Choose whether to encrypt public communication (*HTTPS*) or not (*HTTP*). If choosing *HTTPS*, refer to *SSL Support: Protocol* for configuration details.

**VNC Settings: Keymap**

Change the default VNC keymap for instances. By default, *en-us* is used. Enter the value in lowercase, either as a two character code (such as *de* or *jp*) or, as a five character code such as *de-ch* or *en-uk*, if applicable.

**VNC Settings: NoVNC Protocol**

After having started an instance you can display its VNC console in the OpenStack Dashboard (Horizon) via the browser using the noVNC implementation. By default this connection is not encrypted and can potentially be eavesdropped. Enable encrypted communication for noVNC by choosing *HTTPS* and providing the locations for the certificate key pair files.

**Logging: Verbose Logging**

Shows debugging output in the log files when set to *true*.

---

**Note: Custom Vendor Data for Instances**

You can pass custom vendor data to all VMs via Nova's metadata server. For example, information about a custom SMT server can be used by the SUSE guest images to automatically configure the repositories for the guest.

1. To pass custom vendor data, switch to the *Raw* view of the Nova barclamp.

2. Search for the following section:

   ```json
   "metadata": {
   "vendordata": {
       "json": "{}"
   }
   ```
3. As value of the `json` entry, enter valid JSON data. For example:

```json
"metadata": {
  "vendordata": {
    "json": "{"CUSTOM_KEY": "CUSTOM_VALUE"}"
  }
}
```

The string needs to be escaped because the barclamp file is in JSON format, too.

Use the following command to access the custom vendor data from inside a VM:

```
curl -s http://METADATA_SERVER/openstack/latest/vendor_data.json
```

The IP address of the metadata server is always the same from within a VM. For more details, see [https://www.suse.com/communities/blog/vms-get-access-metadata-neutron/](https://www.suse.com/communities/blog/vms-get-access-metadata-neutron/).
The Nova component consists of eight different roles:

**nova-controller**

Distributing and scheduling the instances is managed by the *nova-controller*. It also provides networking and messaging services. *nova-controller* needs to be installed on a Control Node.

**nova-compute-kvm / nova-compute-qemu / nova-compute-vmware / nova-compute-xen / nova-compute-zvm**

Provides the hypervisors (KVM, QEMU, VMware vSphere, Xen, and z/VM) and tools needed to manage the instances. Only one hypervisor can be deployed on a single compute node. To use different hypervisors in your cloud, deploy different hypervisors to different Compute Nodes. A *nova-compute-* role needs to be installed on every Compute Node. However, not all hypervisors need to be deployed.

Each image that will be made available in SUSE OpenStack Cloud to start an instance is bound to a hypervisor. Each hypervisor can be deployed on multiple Compute Nodes (except for the VMWare vSphere role, see below). In a multi-hypervisor deployment you should make sure to deploy the *nova-compute-* roles in a way, that enough compute power is available for each hypervisor.

**Note: Re-assigning Hypervisors**

Existing *nova-compute-* nodes can be changed in a production SUSE OpenStack Cloud without service interruption. You need to “evacuate” the node, re-assign a new *nova-compute* role via the Nova barclamp and Apply the change. *nova-compute-vmware* can only be deployed on a single node.

**Important: Deploying VMware vSphere (vmware)**

VMware vSphere is not supported “natively” by SUSE OpenStack Cloud—it rather delegates requests to an existing vCenter. It requires preparations at the vCenter and post install adjustments of the Compute Node. See *Appendix A, VMware vSphere Installation Instructions* for instructions. *nova-compute-vmware* can only be deployed on a single Compute Node.
11.10.1 HA Setup for Nova

Making *nova-controller* highly available requires no special configuration—it is sufficient to deploy it on a cluster.

To enable High Availability for Compute Nodes, deploy the following roles to one or more clusters with remote nodes:

- *nova-compute-kvm*
- *nova-compute-qemu*
- *nova-compute-xen*
- *ec2-api*

The cluster to which you deploy the roles above can be completely independent of the one to which the role *nova-controller* is deployed.
However, the **nova-controller** and **ec2-api** roles must be deployed the same way (either *both* to a cluster or *both* to individual nodes. This is due to Crowbar design limitations.

**Tip: Shared Storage**

It is recommended to use shared storage for the `/var/lib/nova/instances` directory, to ensure that ephemeral disks will be preserved during recovery of VMs from failed compute nodes. Without shared storage, any ephemeral disks will be lost, and recovery will rebuild the VM from its original image.

If an external NFS server is used, enable the following option in the Nova barclamp proposal: *Shared Storage for Nova instances has been manually configured.*

### 11.11 Deploying Horizon (OpenStack Dashboard)

The last component that needs to be deployed is Horizon, the OpenStack Dashboard. It provides a Web interface for users to start and stop instances and for administrators to manage users, groups, roles, etc. Horizon should be installed on a Control Node. To make Horizon highly available, deploy it on a cluster.

The following attributes can be configured:

**Session Timeout**

Timeout (in minutes) after which a user is been logged out automatically. The default value is set to four hours (240 minutes).

**Note: Timeouts Larger than Four Hours**

Every Horizon session requires a valid Keystone token. These tokens also have a lifetime of four hours (14400 seconds). Setting the Horizon session timeout to a value larger than 240 will therefore have no effect, and you will receive a warning when applying the barclamp.

To successfully apply a timeout larger than four hours, you first need to adjust the Keystone token expiration accordingly. To do so, open the Keystone barclamp in *Raw mode* and adjust the value of the key `token_expiration`. Note that the value has to be provided in *seconds*. When the change is successfully applied, you can
adjust the Horizon session timeout (in minutes). Note that extending the Keystone token expiration may cause scalability issues in large and very busy SUSE OpenStack Cloud installations.

**User Password Validation: Regular expression used for password validation**

Specify a regular expression with which to check the password. The default expression (\.{8,}) tests for a minimum length of 8 characters. The string you enter is interpreted as a Python regular expression (see [http://docs.python.org/2.7/library/re.html#module-re](http://docs.python.org/2.7/library/re.html#module-re) for a reference).

**User Password Validation: Text to display if the password does not pass validation**

Error message that will be displayed in case the password validation fails.

**SSL Support: Protocol**

Choose whether to encrypt public communication (HTTPS) or not (HTTP). If choosing HTTPS, you have two choices. You can either **Generate (self-signed) certificates** or provide the locations for the certificate key pair files and,—optionally— the certificate chain file. Using self-signed certificates is for testing purposes only and should never be used in production environments!

![Horizon Barclamp](image)

**FIGURE 11.19: THE HORIZON BARCLAMP**
11.11.1 HA Setup for Horizon

Making Horizon highly available requires no special configuration—it is sufficient to deploy it on a cluster.

11.12 Deploying Heat (Optional)

Heat is a template-based orchestration engine that enables you to, for example, start workloads requiring multiple servers or to automatically restart instances if needed. It also brings auto-scaling to SUSE OpenStack Cloud by automatically starting additional instances if certain criteria are met. For more information about Heat refer to the OpenStack documentation at http://docs.openstack.org/developer/heat/.

Heat should be deployed on a Control Node. To make Heat highly available, deploy it on a cluster.

The following attributes can be configured for Heat:

- **Verbose Logging**
  Shows debugging output in the log files when set to true.

- **SSL Support: Protocol**
  Choose whether to encrypt public communication (HTTPS) or not (HTTP). If choosing HTTPS, refer to SSL Support: Protocol for configuration details.
11.12.1 Enabling Identity Trusts Authorization (Optional)

Heat uses Keystone Trusts to delegate a subset of user roles to the Heat engine for deferred operations (see Steve Hardy's blog (http://hardysteven.blogspot.de/2014/04/heat-auth-model-updates-part-1-trusts.html) for details). It can either delegate all user roles or only
those specified in the `trusts_delegated_roles` setting. Consequently, all roles listed in `trusts_delegated_roles` need to be assigned to a user, otherwise the user will not be able to use Heat.

The recommended setting for `trusts_delegated_roles` is `Member`, since this is the default role most users are likely to have. This is also the default setting when installing SUSE OpenStack Cloud from scratch.

On installations where this setting is introduced through an upgrade, `trusts_delegated_roles` will be set to `heat_stack_owner`. This is a conservative choice to prevent breakage in situations where unprivileged users may already have been assigned the `heat_stack_owner` role to enable them to use Heat but lack the `Member` role. As long as you can ensure that all users who have the `heat_stack_owner` role also have the `Member` role, it is both safe and recommended to change `trusts_delegated_roles` to `Member`.

To view or change the `trusts_delegated_roles` setting you need to open the Heat barclamp and click `Raw` in the `Attributes` section. Search for the `trusts_delegated_roles` setting and modify the list of roles as desired.

![FIGURE 11.21: THE HEAT BARCLAMP: RAW MODE](image)

**Warning: Empty Value**

An empty value for `trusts_delegated_roles` will delegate all of user roles to Heat. This may create a security risk for users who are assigned privileged roles, such as `admin`, because these privileged roles will also be delegated to the Heat engine when these users create Heat stacks.
11.12.2  HA Setup for Heat

Making Heat highly available requires no special configuration—it is sufficient to deploy it on a cluster.

11.13  Deploying Ceilometer (Optional)

Ceilometer collects CPU and networking data from SUSE OpenStack Cloud. This data can be used by a billing system to enable customer billing. Deploying Ceilometer is optional.

For more information about Ceilometer refer to the OpenStack documentation at http://docs.openstack.org/developer/ceilometer/.

⚠️ Important: Ceilometer Restrictions

As of SUSE OpenStack Cloud 7 data measuring is only supported for KVM, Xen and Windows instances. Other hypervisors and SUSE OpenStack Cloud features such as object or block storage will not be measured.

The following attributes can be configured for Ceilometer:

Interval used for CPU/disk/network/other meter updates (in seconds)

Specify an interval in seconds after which Ceilometer performs an update of the specified meter.

Evaluation interval for threshold alarms (in seconds)

Set the interval after which to check whether to raise an alarm because a threshold has been exceeded. For performance reasons, do not set a value lower than the default (60s).

Use MongoDB instead of standard database

Ceilometer collects a large amount of data, which is written to a database. In a production system it is recommended to use a separate database for Ceilometer rather than the standard database that is also used by the other SUSE OpenStack Cloud components. MongoDB is optimized to write a lot of data. As of SUSE OpenStack Cloud 7, MongoDB is only included as a technology preview and not supported.

How long are metering/event samples kept in the database (in days)

Specify how long to keep the data. -1 means that samples are kept in the database forever.
## Verbose Logging

Shows debugging output in the log files when set to true.

### FIGURE 11.22: THE CEILOMETER BARCLAMP

### SSL Support: Protocol

With the default value HTTP enabled, public communication is not be encrypted. Choose HTTPS to use SSL for encryption. See Section 2.3, “SSL Encryption” for background information and Section 10.4.6, “Enabling SSL” for installation instructions. The following additional configuration options will become available when choosing HTTPS:

**Generate (self-signed) certificates**

When set to true, self-signed certificates are automatically generated and copied to the correct locations. This setting is for testing purposes only and should never be used in production environments!
SSL Certificate File / SSL (Private) Key File

Location of the certificate key pair files.

SSL Certificate is insecure

Set this option to `true` when using self-signed certificates to disable certificate checks. This setting is for testing purposes only and should never be used in production environments!

SSL CA Certificates File

Specify the absolute path to the CA certificate. This field is mandatory, and leaving it blank will cause the barclamp to fail. To fix this issue, you have to provide the absolute path to the CA certificate, restart the `apache2` service, and re-deploy the barclamp.

When the certificate is not already trusted by the pre-installed list of trusted root certificate authorities, you need to provide a certificate bundle that includes the root and all intermediate CAs.

The Ceilometer component consists of five different roles:

**ceilometer-server**

The Ceilometer API server role. This role needs to be deployed on a Control Node. Ceilometer collects approximately 200 bytes of data per hour and instance. Unless you have a very huge number of instances, there is no need to install it on a dedicated node.

**ceilometer-polling**

The polling agent listens to the message bus to collect data. It needs to be deployed on a Control Node. It can be deployed on the same node as `ceilometer-server`.

**ceilometer-agent**

The compute agents collect data from the compute nodes. They need to be deployed on all KVM and Xen compute nodes in your cloud (other hypervisors are currently not supported).

**ceilometer-swift-proxy-middleware**

An agent collecting data from the Swift nodes. This role needs to be deployed on the same node as swift-proxy.
11.13.1 HA Setup for Ceilometer

Making Ceilometer highly available requires no special configuration—it is sufficient to deploy the roles `ceilometer-server` and `ceilometer-polling` on a cluster. If you are using MongoDB for your back-end the cluster must have a minimum of three nodes. If you are using MySQL or PostgreSQL, you may use two nodes. (MongoDB is the recommended back-end for best performance.)

11.14 Deploying Aodh

Aodh is part of OpenStack Telemetry services. Aodh enables the ability to provide alarms and notifications based on metrics collected by Ceilometer. You can configure the following parameters of the Aodh barclamp:

*Evaluation interval for threshold alarms (in seconds)*

Period of evaluation cycle specified as an integer. This value should be equal or greater than the configured pipeline interval for collection of underlying meters.
SSL Support: Protocol

Choose HTTPS to use SSL for encryption. See Section 2.3, “SSL Encryption” for background information and Section 10.4.6, “Enabling SSL” for installation instructions. The following additional configuration options will become available when choosing HTTPS:

*Generate (self-signed) certificates (implies insecure)*

When set to true, self-signed certificates are automatically generated and copied to the correct locations. This setting is for testing purposes only and should never be used in production environments!

**SSL Certificate File / SSL (Private) Key File**

Location of the certificate key pair files.

**SSL Certificate is insecure (for instance, self-signed)**

Set this option to true when using self-signed certificates to disable certificate checks. This setting is for testing purposes only and should never be used in production environments!

**Require Client Certificate**

Set this option to true when using your own certificate authority (CA) for signing. Having done so, you also need to specify a path to the CA Certificates File. If your certificates are signed by a trusted third party organization, set Require Client Certificate to false, since the “official” certificate authorities (CA) are already known by the system.

**SSL CA Certificates File**

Specify the absolute path to the CA certificate here. This option can only be changed if Require Client Certificate was set to true.
Logging: Verbose Logging

Shows debugging output in the log files when set to true.

11.14.1 HA Setup for Aodh

Making Aodh highly available requires no special configuration—it is sufficient to deploy it on a cluster.

11.15 Deploying Manila

Manila provides coordinated access to shared or distributed file systems, similar to what Cinder does for block storage. These file systems can be shared between instances in SUSE OpenStack Cloud.

Manila uses different back-ends. As of SUSE OpenStack Cloud 7 currently supported back-ends include Hitachi HNAS, NetApp Driver, and CephFS. Two more back-end options, Generic Driver and Other Driver are available for testing purposes and are not supported.
Note: Limitations for CephFS Back-end

Manila uses some CephFS features that are currently not supported by the SUSE Linux Enterprise 12 SP2 CephFS kernel client:

- RADOS namespaces
- MDS path restrictions
- Quotas

As a result, to access CephFS shares provisioned by Manila, you must use ceph-fuse. For details, see [http://docs.openstack.org/developer/manila/devref/cephfs_native_driver.html](http://docs.openstack.org/developer/manila/devref/cephfs_native_driver.html).

When first opening the Manila barclamp, the default proposal Generic Driver is already available for configuration. To replace it, first delete it by clicking the trashcan icon and then choose a different back-end in the section Add new Manila Backend. Select a Type of Share and—optionally—provide a Name for Backend. Activate the back-end with Add Backend. Note that at least one back-end must be configured.

The attributes that can be set to configure Cinder depend on the back-end:

**Back-end: Generic**

The generic driver is included as a technology preview and is not supported.

**Hitachi HNAS**

*Specify which EVS this backend is assigned to*

Provide the name of the Enterprise Virtual Server that the selected back-end is assigned to.

*Specify IP for mounting shares*

IP address for mounting shares.

*Specify file-system name for creating shares*

Provide a file-system name for creating shares.
**HNAS management interface IP**

IP address of the HNAS management interface for communication between Manila controller and HNAS.

**HNAS username Base64 String**

HNAS username Base64 String required to perform tasks like creating file-systems and network interfaces.

**HNAS user password**

HNAS user password. Required only if private key is not provided.

**RSA/DSA private key**

RSA/DSA private key necessary for connecting to HNAS. Required only if password is not provided.

**The time to wait for stalled HNAS jobs before aborting**

Time in seconds to wait before aborting stalled HNAS jobs.

---

**Back-end: Netapp**

**Name of the Virtual Storage Server (vserver)**

Host name of the Virtual Storage Server.

**Server Host Name**

The name or IP address for the storage controller or the cluster.

**Server Port**

The port to use for communication. Port 80 is usually used for HTTP, 443 for HTTPS.

**User name/Password for Accessing NetApp**

Login credentials.

**Transport Type**

Transport protocol for communicating with the storage controller or cluster. Supported protocols are HTTP and HTTPS. Choose the protocol your NetApp is licensed for.

---

**Back-end: CephFS**

**Use Ceph deployed by Crowbar**

Set to `true` to use Ceph deployed with Crowbar.
**Back-end: Manual**

Lets you manually pick and configure a driver. Only use this option for testing purposes, it is not supported.

![Manila GUI Screen](image)

**FIGURE 11.25: THE MANILA BARCLAMP**

The Manila component consists of two different roles:

*manila-server*

The Manila server provides the scheduler and the API. Installing it on a Control Node is recommended.
**manila-share**

The shared storage service. It can be installed on a Control Node, but it is recommended to deploy it on one or more dedicated nodes supplied with sufficient disk space and networking capacity, since it will generate a lot of network traffic.

**FIGURE 11.26: THE MANILA BARCLAMP: NODE DEPLOYMENT EXAMPLE**

11.15.1 HA Setup for Manila

While the *manila-server* role can be deployed on a cluster, deploying *manila-share* on a cluster is not supported. Therefore it is generally recommended to deploy *manila-share* on several nodes —this ensures the service continues to be available even when a node fails.

11.16 Deploying Trove (Optional)

Trove is a Database-as-a-Service for SUSE OpenStack Cloud. It provides database instances which can be used by all instances. With Trove being deployed, SUSE OpenStack Cloud users no longer need to deploy and maintain their own database applications. For more information about Trove; refer to the OpenStack documentation at [http://docs.openstack.org/developer/trove/](http://docs.openstack.org/developer/trove/).
Important: Technology Preview

Trove is only included as a technology preview and not supported.

Trove should be deployed on a dedicated Control Node.

The following attributes can be configured for Trove:

Enable Trove Volume Support

When enabled, Trove will use a Cinder volume to store the data.

Logging:Verbose

Increases the amount of information that is written to the log files when set to true.

Logging:Debug

Shows debugging output in the log files when set to true.
11.16.1 HA Setup for Trove

An HA Setup for Trove is currently not supported.
11.17 Deploying Tempest (Optional)

Tempest is an integration test suite for SUSE OpenStack Cloud written in Python. It contains multiple integration tests for validating your SUSE OpenStack Cloud deployment. For more information about Tempest refer to the OpenStack documentation at http://docs.openstack.org/developer/tempest/.

⚠️ Important: Technology Preview

Tempest is only included as a technology preview and not supported. Tempest may be used for testing whether the intended setup will run without problems. It should not be used in a production environment.

Tempest should be deployed on a Control Node.

The following attributes can be configured for Tempest:

Choose User name / Password

Credentials for a regular user. If the user does not exist, it will be created.

Choose Tenant

Tenant to be used by Tempest. If it does not exist, it will be created. It is safe to stick with the default value.

Choose Tempest Admin User name/Password

Credentials for an admin user. If the user does not exist, it will be created.
FIGURE 11.28: THE TEMPEST BARCLAMP
**Tip: Running Tests**

To run tests with Tempest, log in to the Control Node on which Tempest was deployed. Change into the directory `/var/lib/openstack-tempest-test`. To get an overview of available commands, run:

```
./run_tempest.sh --help
```

To serially invoke a subset of all tests (“the gating smoketests”) to help validate the working functionality of your local cloud instance, run the following command. It will save the output to a log file `tempest_CURRENT_DATE.log`.

```
./run_tempest.sh --no-virtual-env -serial --smoke 2>&1 | tee "tempest_${date +%Y-%m-%d_%H%M%S}.log"
```

11.17.1 HA Setup for Tempest

Tempest cannot be made highly available.

11.18 Deploying Magnum (Optional)

Magnum is an OpenStack project which offers container orchestration engines for deploying and managing containers as first class resources in OpenStack.

For more information about Magnum, see the OpenStack documentation at [http://docs.openstack.org/developer/magnum/](http://docs.openstack.org/developer/magnum/).

For information on how to deploy a Kubernetes cluster (either from command line or from the Horizon Dashboard), see the *Supplement to Administrator Guide and End User Guide*. It is available from [https://www.suse.com/documentation/cloud](https://www.suse.com/documentation/cloud).

The following Attributes can be configured for Magnum:

*Trustee Domain: Delegate trust to cluster users if required*

registry_enabled option in its cluster template set to true. To make this offline scenario work, you also need to set the Delegate trust to cluster users if required option to true. This restores the old, insecure behaviour for clusters with the registry-enabled or volume_driver=Rexray options enabled.

**Trustee Domain: Domain Name**

Domain name to use for creating trustee for bays.

**Logging: Verbose**

Increases the amount of information that is written to the log files when set to true.

**Logging: Debug**

Shows debugging output in the log files when set to true.

**Certificate Manager: Plugin**

To store certificates, either use the Barbican OpenStack service, a local directory (Local), or the Magnum Database (x590keypair).

Note: Barbican As Certificate Manager

If you choose to use Barbican for managing certificates, make sure that the Barbican barclamp is enabled.
The Magnum barclamp consists of the following roles: `magnum-server`. It can either be deployed on a Control Node or on a cluster—see Section 11.18.1, “HA Setup for Magnum”. When deploying the role onto a Control Node, additional RAM is required for the Magnum server. It is recommended to only deploy the role to a Control Node that has 16 GB RAM.

11.18.1 HA Setup for Magnum

Making Magnum highly available requires no special configuration. It is sufficient to deploy it on a cluster.
11.19 Deploying Barbican (Optional)

Barbican is a component designed for storing secrets in a secure and standardized manner protected by Keystone authentication. Secrets include SSL certificates and passwords used by various OpenStack components.

Barbican settings can be configured in **Raw** mode only. To do this, open the Barbican barclamp **Attribute** configuration in **Raw** mode.

When configuring Barbican, pay particular attention to the following settings:

- **bind_host** Bind host for the Barbican API service
- **bind_port** Bind port for the Barbican API service
- **processes** Number of API processes to run in Apache
- **ssl** Enable or disable SSL
- **threads** Number of API worker threads
- **debug** Enable or disable debug logging
- **enable_keystone_listener** Enable or disable the Keystone listener services
- **kek** An encryption key (fixed-length 32-byte Base64-encoded value) for Barbican's **simple_crypto** plugin. If left unspecified, the key will be generated automatically.
Note: Existing Encryption Key

If you plan to restore and use the existing Barbican database after a full reinstall (including a complete wipe of the Crowbar node), make sure to save the specified encryption key beforehand. You will need to provide it after the full reinstall in order to access the data in the restored Barbican database.

SSL Support: Protocol

With the default value HTTP, public communication will not be encrypted. Choose HTTPS to use SSL for encryption. See Section 2.3, “SSL Encryption” for background information and Section 10.4.6, “Enabling SSL” for installation instructions. The following additional configuration options will become available when choosing HTTPS:

*Generate (self-signed) certificates*

When set to true, self-signed certificates are automatically generated and copied to the correct locations. This setting is for testing purposes only and should never be used in production environments!

*SSL Certificate File / SSL (Private) Key File*

Location of the certificate key pair files.

*SSL Certificate is insecure*

Set this option to true when using self-signed certificates to disable certificate checks. This setting is for testing purposes only and should never be used in production environments!

*SSL CA Certificates File*

Specify the absolute path to the CA certificate. This field is mandatory, and leaving it blank will cause the barclamp to fail. To fix this issue, you have to provide the absolute path to the CA certificate, restart the apache2 service, and re-deploy the barclamp.

When the certificate is not already trusted by the pre-installed list of trusted root certificate authorities, you need to provide a certificate bundle that includes the root and all intermediate CAs.
11.19.1 HA Setup for Barbican

To make Barbican highly available, assign the `barbican-controller` role to the Controller Cluster.

11.20 Deploying Sahara

Sahara provides users with simple means to provision data processing frameworks (such as Hadoop, Spark, and Storm) on OpenStack. This is accomplished by specifying configuration parameters such as the framework version, cluster topology, node hardware details, etc.

Logging: Verbose

Set to `true` to increase the amount of information written to the log files.
11.20.1 HA Setup for Sahara

Making Sahara highly available requires no special configuration. It is sufficient to deploy it on a cluster.

11.21 Deploying Monasca

Monasca is an open-source monitoring-as-a-service solution that integrates with OpenStack. Monasca is designed for scalability, high performance, and fault tolerance.

Accessing the Raw interface is not required for day-to-day operation. But as not all Monasca settings are exposed in the barclamp graphical interface (for example, various performance turnables), it is recommended to configure Monasca in the Raw mode. Below are the options that can be configured via the Raw interface of the Monasca barclamp.

```

FIGURE 11.33: THE MONASCA BARCLAMP RAW MODE

[Code Snippet]
```
**agent: settings for openstack-monasca-agent**

**keystone**
Contains Keystone credentials that the agents use to send metrics. Do not change these options, as they are configured by Crowbar.

**insecure**
Specifies whether SSL certificates are verified when communicating with Keystone. If set to `false`, the `ca_file` option must be specified.

**ca_file**
 Specifies the location of a CA certificate that is used for verifying Keystone's SSL certificate.

**log_dir**
Path for storing log files. The specified path must exist. Do not change the default `/var/log/monasca-agent` path.

**log_level**
Agent's log level. Limits log messages to the specified level and above. The following levels are available: Error, Warning, Info (default), and Debug.

**check_frequency**
Interval in seconds between running agents' checks.

**num_collector_threads**
Number of simultaneous collector threads to run. This refers to the maximum number of different collector plug-ins (for example, `http_check`) that are allowed run simultaneously. The default value 1 means that plug-ins are run sequentially.

**pool_full_max_retries**
If a problem with the results from multiple plug-ins results blocks the entire thread pool (as specified by the `num_collector_threads` parameter), the collector exits, so it can be restarted by the `supervisord`. The parameter `pool_full_max_retries` specifies when this event occurs. The collector exits when the defined number of consecutive collection cycles have ended with the thread pool completely full.

**plugin_collect_time_warn**
Upper limit in seconds for any collection plug-in's run time. A warning is logged if a plug-in runs longer than the specified limit.
max_measurement_buffer_size
  Maximum number of measurements to buffer locally if the Monasca API is unreachable. Measurements will be dropped in batches, if the API is still unreachable after the specified number of messages are buffered. The default -1 value indicates unlimited buffering. Note that a large buffer increases the agent's memory usage.

backlog_send_rate
  Maximum number of measurements to send when the local measurement buffer is flushed.

amplifier
  Number of extra dimensions to add to metrics sent to the Monasca API. This option is intended for load testing purposes only. Do not enable the option in production! The default 0 value disables the addition of dimensions.

log_agent: settings for openstack-monasca-log-agent

max_data_size_kb
  Maximum payload size in kilobytes for a request sent to the Monasca log API.

num_of_logs
  Maximum number of log entries the log agent sends to the Monasca log API in a single request. Reducing the number increases performance.

elapsed_time_sec
  Time interval in seconds between sending logs to the Monasca log API.

delay
  Interval in seconds for checking whether elapsed_time_sec has been reached.

keystone
  Keystone credentials the log agents use to send logs to the Monasca log API. Do not change this option manually, as it is configured by Crowbar.

api: Settings for openstack-monasca-api

bind_host
  Interfaces monasca-api listens on. Do not change this option, as it is configured by Crowbar.
processes
Number of processes to spawn.

threads
Number of WSGI worker threads to spawn.

log_level
Log level for openstack-monasca-api. Limits log messages to the specified level and above. The following levels are available: Critical, Error, Warning, Info (default), Debug, and Trace.

elasticsearch: server-side settings for elasticsearch

repo_dir
List of directories for storing elasticsearch snapshots. Must be created manually and be writeable by the elasticsearch user. Must contain at least one entry in order for the snapshot functionality to work.
For instructions on creating an elasticsearch snapshot, see the SUSE OpenStack Cloud Monitoring Monitoring Service Operator's Guide, chapter Operation and Maintenance, section Database. It is available from https://www.suse.com/documentation/.

elasticsearch_curator: settings for elasticsearch-curactor

elasticsearch-curactor removes old and large elasticsearch indices. The settings below determine its behavior.

delete_after_days
Time threshold for deleting indices. Indices older the specified number of days are deleted. This parameter is unset by default, so indices are kept indefinitely.

delete_after_size
Maximum size in megabytes of indices. Indices larger than the specified size are deleted. This parameter is unset by default, so indices are kept irrespective of their size.

delete_exclude_index
List of indices to exclude from elasticsearch-curactor runs. By default, only the .kibana files are excluded.
cron_config

Specifies when to run `elasticsearch-curator`. Attributes of this parameter correspond to the fields in `crontab(5)`.

**kafka: tunables for Kafka**

log_retention_hours

Number of hours for retaining log segments in Kafka's on-disk log. Messages older than the specified value are dropped.

log_retention_bytes

Maximum size for Kafka's on-disk log in bytes. If the log grows beyond this size, the oldest log segments are dropped.

**master: configuration for monasca-installer on the Crowbar node**

influxdb_retention_policy

Number of days to keep metrics records in influxdb. For an overview of all supported values, see https://docs.influxdata.com/influxdb/v0.9/query_language/database_management/#create-retention-policies-with-create-retention-policy.

notification_enable_email

Enable or disable email alarm notifications.

smtp_host

SMTP smarthost for sending alarm notifications.

smtp_port

Port for the SMTP smarthost.

smtp_user

User name for authenticating against the smarthost.

smtp_password

Password for authenticating against the smarthost.

smtp_from_address

Sender address for alarm notifications.
Deployment

The Monasca component consists of following roles:

**monasca-server**

Monasca server-side components that are deployed by Chef. Currently, this only creates Keystone resources required by Monasca, such as users, roles, endpoints, etc. The rest is left to the Ansible-based `monasca-installer` run by the `monasca-master` role.

**monasca-master**

Runs the Ansible-based `monasca-installer` from the Crowbar node. The installer deploys the Monasca server-side components to the node that has the `monasca-server` role assigned to it. These components are `openstack-monasca-api`, and `openstack-monasca-log-api`, as well as all the back-end services they use.

**monasca-agent**

Deploys `openstack-monasca-agent` that is responsible for sending metrics to `monasca-api` on nodes it is assigned to.

**monasca-log-agent**

Deploys `openstack-monasca-log-agent` responsible for sending logs to `monasca-log-api` on nodes it is assigned to.
11.22 Deploying Ironic (optional)

The Ironic barclamp is included in SUSE OpenStack Cloud as technology preview. Ironic is the OpenStack bare metal service for provisioning physical machines. Refer to the OpenStack developer and admin manual (https://docs.openstack.org/ironic/latest/) for information on drivers, and administering Ironic.
Deploying the Ironic barclamp has five steps:

- Set options in the Custom view of the barclamp.
- List the _enabled_drivers_ in the Raw view.
- Configure the Ironic network in _network.json_.
- Apply the barclamp to a Control Node.
- Apply the _nova-compute-ironic_ role to the same node you applied the Ironic barclamp to, in place of the other _nova-compute-*_ roles.

### 11.22.1 Custom View Options

Currently, there are two options in the Custom view of the barclamp.

**Enable automated node cleaning**

Node cleaning prepares the node to accept a new workload. When you set this to _true_, Ironic collects a list of cleaning steps from the Power, Deploy, Management, and RAID interfaces of the driver assigned to the node. Ironic automatically prioritizes and executes the cleaning steps, and changes the state of the node to "cleaning". When cleaning is complete the state becomes "available". After a new workload is assigned to the machine its state changes to "active".

false disables automatic cleaning, and you must configure and apply node cleaning manually. This requires the admin to create and prioritize the cleaning steps, and to set up a cleaning network. Apply manual cleaning when you have long-running or destructive tasks that you wish to monitor and control more closely. (See Node Cleaning (https://docs.openstack.org/ironic/latest/admin/cleaning.html).)

**SSL Support: Protocol**

SSL support is not yet enabled, so the only option is _HTTP_.

11.22.2 Ironic Drivers

You must enter the Raw view of barclamp and specify a list of drivers to load during service initialization. `pxe_ipmitool` is the recommended default Ironic driver. It uses the Intelligent Platform Management Interface (IPMI) to control the power state of your bare metal machines, creates the appropriate PXE configurations to start them, and then performs the steps to provision and configure the machines.

`pxe_ssh` enables Ironic to simulate physical machines in virtual machines.

```
"enabled_drivers": ["pxe_ipmitool", "pxe_ssh"],
```

See Ironic Drivers (https://wiki.openstack.org/wiki/Ironic/Drivers) for more information.
11.22.3  Example Ironic Network Configuration

This is a complete Ironic network.json example, using the default network.json, followed by a diff that shows the Ironic-specific configurations.

EXAMPLE 11.1: EXAMPLE NETWORK.JSON

```
{
  "start_up_delay": 30,
  "enable_rx_offloading": true,
  "enable_tx_offloading": true,
  "mode": "single",
  "teaming": {
    "mode": 1
  },
  "interface_map": [
    {
      "bus_order": [
        "0000:00/0000:00:01",
        "0000:00/0000:00:03"
      ],
      "pattern": "PowerEdge R610"
    },
    {
      "bus_order": [
        "0000:00/0000:00:01.1/0000:01:00.0",
        "0000:00/0000:00:01.1/0000:01:00.1",
        "0000:00/0000:00:01.0/0000:02:00.0",
        "0000:00/0000:00:01.0/0000:02:00.1"
      ],
      "pattern": "PowerEdge R620"
    },
    {
      "bus_order": [
        "0000:00/0000:00:01",
        "0000:00/0000:00:03"
      ],
      "pattern": "PowerEdge R710"
    },
    {
      "bus_order": [
        "0000:00/0000:00:00:04",
        "0000:00/0000:00:00:02"
      ],
      "pattern": "PowerEdge C6145"
    }
  ]
}
```
"bus_order": [  "0000:00/0000:00:03.0/0000:01:00.0",  "0000:00/0000:00:03.0/0000:01:00.1",  "0000:00/0000:00:1c.4/0000:06:00.0",  "0000:00/0000:00:1c.4/0000:06:00.1"  ],  "pattern": "PowerEdge R730xd"
},  {
  "bus_order": [  "0000:00/0000:00:1c",  "0000:00/0000:00:07",  "0000:00/0000:00:09",  "0000:00/0000:00:01"
  ],  "pattern": "PowerEdge C2100"
},  {
  "bus_order": [  "0000:00/0000:00:01",  "0000:00/0000:00:03",  "0000:00/0000:00:07"
  ],  "pattern": "C6100"
},  {
  "bus_order": [  "0000:00/0000:00:01",  "0000:00/0000:00:02"
  ],  "pattern": "product"
},  "conduit_map": [  {  "conduit_list": {  "intf0": {  "if_list": [  "1g1",  "1g2"  ]  },  "intf1": {  "if_list": [  "1g1",  "1g2"  ]  }  }  }]
Example Ironic Network Configuration

SUSE OpenStack Cloud 7
Example Ironic Network Configuration

SUSE OpenStack Cloud 7

```

```
"if_list": [
  "?1g1"
],
"intf1": {
  "if_list": [
    "1g1"
  ]
},
"intf2": {
  "if_list": [
    "1g1"
  ]
},
"intf3": {
  "if_list": [
    "1g1"
  ]
}
},
"pattern": ".*/.*/.*"
},
{
  "conduit_list": {
    "intf0": {
      "if_list": [
        "1g1"
      ]
    },
    "intf1": {
      "if_list": [
        "?1g1"
      ]
    },
    "intf2": {
      "if_list": [
        "?1g1"
      ]
    },
    "intf3": {
      "if_list": [
        "?1g1"
      ]
    }
  },
  "pattern": "mode/1g_adpt_count/role"
}
Example Ironic Network Configuration

```
},
"networks": {
"ironic": {
  "conduit": "intf3",
  "vlan": 100,
  "use_vlan": false,
  "add_bridge": false,
  "add_ovs_bridge": false,
  "bridge_name": "br-ironic",
  "subnet": "192.168.128.0",
  "netmask": "255.255.255.0",
  "broadcast": "192.168.128.255",
  "router": "192.168.128.1",
  "router_pref": 50,
  "ranges": {
    "admin": {
      "start": "192.168.128.10",
      "end": "192.168.128.11"
    },
    "dhcp": {
      "start": "192.168.128.21",
      "end": "192.168.128.254"
    }
  },
  "mtu": 1500
},
"storage": {
  "conduit": "intf1",
  "vlan": 200,
  "use_vlan": true,
  "add_bridge": false,
  "mtu": 1500,
  "subnet": "192.168.125.0",
  "netmask": "255.255.255.0",
  "broadcast": "192.168.125.255",
  "ranges": {
    "host": {
      "start": "192.168.125.10",
      "end": "192.168.125.239"
    }
  }
},
"public": {
  "conduit": "intf1",
  "vlan": 300,
  "use_vlan": true,
  "add_bridge": false,
```
Example Ironic Network Configuration

SUSE OpenStack Cloud 7

```json
{
  "mtu": 1500,
  "bmc": {
    "conduit": "bmc",
    "vlan": 100,
    "use_vlan": false,
    "add_bridge": false,
    "subnet": "192.168.124.0",
    "netmask": "255.255.255.0",
    "broadcast": "192.168.124.255",
    "ranges": {
      "host": {
        "start": "192.168.124.162",
        "end": "192.168.124.240"
      }
    },
    "router": "192.168.124.1"
  },
  "bmc_vlan": {
    "conduit": "intf2",
    "vlan": 100,
    "use_vlan": true,
    "add_bridge": false,
    "subnet": "192.168.124.0",
    "netmask": "255.255.255.0",
    "broadcast": "192.168.124.255",
    "ranges": {
      "host": {
        "start": "192.168.124.161",
        "end": "192.168.124.161"
      }
    }
  },
  "os_sdn": {
    "conduit": "intf1",
    "vlan": 400,
    "use_vlan": true,
    "add_bridge": false,
    "mtu": 1500,
    "subnet": "192.168.130.0",
    "netmask": "255.255.255.0",
    "broadcast": "192.168.130.255",
    "ranges": {
      "host": {
        "start": "192.168.130.10",
        "end": "192.168.130.254"
      }
    }
  }
}
```
"end": "192.168.130.254"
}
}

"admin": {
  "conduit": "intf0",
  "vlan": 100,
  "use_vlan": false,
  "add_bridge": false,
  "mtu": 1500,
  "subnet": "192.168.124.0",
  "netmask": "255.255.255.0",
  "broadcast": "192.168.124.255",
  "router": "192.168.124.1",
  "router_pref": 10,
  "ranges": {
    "admin": {
      "start": "192.168.124.10",
      "end": "192.168.124.11"
    },
    "dhcp": {
      "start": "192.168.124.21",
      "end": "192.168.124.80"
    },
    "host": {
      "start": "192.168.124.81",
      "end": "192.168.124.160"
    },
    "switch": {
      "start": "192.168.124.241",
      "end": "192.168.124.250"
    }
  }
}

---

EXAMPLE 11.2: DIFF OF IRONIC CONFIGURATION

This diff should help you separate the Ironic items from the default network.json.

```diff
--- network.json  2017-06-07 09:22:38.614557114 +0200
+++ ironic_network.json  2017-06-05 12:01:15.927028019 +0200
@@ -91,6 +91,12 @@
       "1g1",
     "1g2"
   }
+}
```
Example Ironic Network Configuration

```
+ "intf3": {
+   "if_list": [
+     "1g1",
+     "1g2"
+   ]
+ },
  "pattern": "team/.*.**"
@@ -111,6 +117,11 @@
+ "if_list": [
+   "?1g1"
+ ]
+ },
+ "intf3": {
+   "if_list": [
+     "?1g2"
+   ]
+ },
  "pattern": "dual/.*.**"
@@ -131,6 +142,36 @@
+ "if_list": [
+   "?1g1"
+ ]
+ },
+ "intf3": {
+   "if_list": [
+     "?1g2"
+   ]
+ },
      "pattern": "single/.*.*/ironic.**"
+ },
+ { "conduit_list": {
+   "intf0": {
+     "if_list": [
+       "?1g1"
+     ]
+   },
+   "intf1": {
+     "if_list": [
+       "?1g1"
+     ]
+   },
+   "intf2": {
+     "if_list": [
+       "?1g1"
+     ]
+   }
```
Example Ironic Network Configuration

```
+        "?1g1",
+    }},
+  "intf3": {
+    "if_list": [
+      "?1g1"
+    ]
+  }
+},
  "pattern": "single/\.*/\.*"
@@ -151,6 +192,11 @@
    "if_list": [
      "1g1"
    ]
+  },
+  "intf3": {
+    "if_list": [
+      "1g1"
+    ]
+  }
+},
  "pattern": "\.*/\.*/\.*"
@@ -171,12 +217,41 @@
    "if_list": [
      "?1g1"
    ]
+  },
+  "intf3": {
+    "if_list": [
+      "?1g1"
+    ]
+  }
+},
  "pattern": "mode/1g_adpt_count/role"
}
],
"networks": {
  "ironic": {
    "conduit": "intf3",
    "vlan": 100,
    "use_vlan": false,
    "add_bridge": false,
    "add_ovs_bridge": false,
    "bridge_name": "br-ironic",
    "subnet": "192.168.128.0",
    "netmask": "255.255.255.0",
    "broadcast": "192.168.128.255",
```
11.23 How to Proceed

With a successful deployment of the OpenStack Dashboard, the SUSE OpenStack Cloud installation is finished. To be able to test your setup by starting an instance one last step remains to be done—uploading an image to the Glance component. Refer to the Supplement to Administrator Guide and End User Guide, chapter Manage images for instructions. Images for SUSE OpenStack Cloud can be built in SUSE Studio. Refer to the Supplement to Administrator Guide and End User Guide, section Building Images with SUSE Studio.

Now you can hand over to the cloud administrator to set up users, roles, flavors, etc.—refer to the Administrator Guide for details. The default credentials for the OpenStack Dashboard are user name admin and password crowbar.

11.24 Roles and Services in SUSE OpenStack Cloud

The following table lists all roles (as defined in the barclamps), and their associated services. As of SUSE OpenStack Cloud 7 this list is work in progress. Services can be manually started and stopped with the commands systemctl start SERVICE and systemctl stop SERVICE.

<table>
<thead>
<tr>
<th>Role</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>calamari</td>
<td>cthulhu</td>
</tr>
<tr>
<td>Role</td>
<td>Service</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td>ceilometer-agent</td>
<td><em>openstack-ceilometer-agent-compute</em></td>
</tr>
<tr>
<td>ceilometer-polling</td>
<td><em>openstack-ceilometer-agent-notification</em></td>
</tr>
<tr>
<td>ceilometer-server</td>
<td><em>openstack-ceilometer-alarm-evaluator</em></td>
</tr>
<tr>
<td>ceilometer-swift-proxy-middleware</td>
<td><em>openstack-ceilometer-alarm-notifier</em></td>
</tr>
<tr>
<td></td>
<td><em>openstack-ceilometer-api</em></td>
</tr>
<tr>
<td></td>
<td><em>openstack-ceilometer-collector</em></td>
</tr>
<tr>
<td></td>
<td><em>openstack-ceilometer-polling</em></td>
</tr>
<tr>
<td>ceph-mon</td>
<td>ceph-mon*@</td>
</tr>
<tr>
<td>ceph-osd</td>
<td>ceph-osd*@</td>
</tr>
<tr>
<td>ceph-radosgw</td>
<td>ceph-radosgw*@</td>
</tr>
<tr>
<td>cinder-controller</td>
<td><em>openstack-cinder-api</em></td>
</tr>
<tr>
<td></td>
<td><em>openstack-cinder-scheduler</em></td>
</tr>
<tr>
<td>cinder-volume</td>
<td><em>openstack-cinder-volume</em></td>
</tr>
<tr>
<td>database-server</td>
<td>postgresql_</td>
</tr>
<tr>
<td>glance-server</td>
<td><em>openstack-glance-api</em></td>
</tr>
<tr>
<td></td>
<td><em>openstack-glance-registry</em></td>
</tr>
<tr>
<td>heat-server</td>
<td><em>openstack-heat-api-cfn</em></td>
</tr>
<tr>
<td></td>
<td><em>openstack-heat-api-cloudwatch</em></td>
</tr>
<tr>
<td></td>
<td><em>openstack-heat-api</em></td>
</tr>
<tr>
<td></td>
<td><em>openstack-heat-engine</em></td>
</tr>
<tr>
<td>Role</td>
<td>Service</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td>horizon</td>
<td>apache2</td>
</tr>
<tr>
<td>keystone-server</td>
<td>openstack-keystone</td>
</tr>
<tr>
<td>manila-server</td>
<td>openstack-manila-api</td>
</tr>
<tr>
<td></td>
<td>openstack-manila-scheduler</td>
</tr>
<tr>
<td>manila-share</td>
<td>openstack-manila-share</td>
</tr>
<tr>
<td>neutron-server</td>
<td>openstack-neutron</td>
</tr>
<tr>
<td>nova-compute.*</td>
<td>openstack-nova-compute</td>
</tr>
<tr>
<td></td>
<td>openstack-neutron-openvswitch-agent</td>
</tr>
<tr>
<td></td>
<td>(when neutron is deployed with openvswitch)</td>
</tr>
<tr>
<td>nova-controller</td>
<td>openstack-nova-api</td>
</tr>
<tr>
<td></td>
<td>openstack-nova-cert</td>
</tr>
<tr>
<td></td>
<td>openstack-nova-conductor</td>
</tr>
<tr>
<td></td>
<td>openstack-nova-consoleauth</td>
</tr>
<tr>
<td></td>
<td>openstack-nova-novncproxy</td>
</tr>
<tr>
<td></td>
<td>openstack-nova-objectstore</td>
</tr>
<tr>
<td></td>
<td>openstack-nova-scheduler</td>
</tr>
<tr>
<td>rabbitmq-server</td>
<td>rabbitmq-server</td>
</tr>
<tr>
<td>swift-dispersion</td>
<td>none</td>
</tr>
<tr>
<td>swift-proxy</td>
<td>openstack-swift-proxy</td>
</tr>
<tr>
<td>swift-ring-compute</td>
<td>none</td>
</tr>
<tr>
<td>swift-storage</td>
<td>openstack-swift-account-auditor</td>
</tr>
<tr>
<td>Role</td>
<td>Service</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>openstack-swift-account-reaper</td>
</tr>
<tr>
<td></td>
<td>openstack-swift-account-replicator</td>
</tr>
<tr>
<td></td>
<td>openstack-swift-account</td>
</tr>
<tr>
<td></td>
<td>openstack-swift-container-auditor</td>
</tr>
<tr>
<td></td>
<td>openstack-swift-container-replicator</td>
</tr>
<tr>
<td></td>
<td>openstack-swift-container-sync</td>
</tr>
<tr>
<td></td>
<td>openstack-swift-container-updater</td>
</tr>
<tr>
<td></td>
<td>openstack-swift-container</td>
</tr>
<tr>
<td></td>
<td>openstack-swift-object-auditor</td>
</tr>
<tr>
<td></td>
<td>openstack-swift-object-expirer</td>
</tr>
<tr>
<td></td>
<td>openstack-swift-object-replicator</td>
</tr>
<tr>
<td></td>
<td>openstack-swift-object-updater</td>
</tr>
<tr>
<td></td>
<td>openstack-swift-object</td>
</tr>
<tr>
<td>trove-server</td>
<td>openstack-trove-api</td>
</tr>
<tr>
<td></td>
<td>openstack-trove-conductor</td>
</tr>
<tr>
<td></td>
<td>openstack-trove-taskmanager</td>
</tr>
</tbody>
</table>
12 Limiting Users' Access Rights

To limit users' access rights (or to define more fine-grained access rights), you can use Role Based Access Control (RBAC, only available with Keystone v3). In the example below, we will create a new role (ProjectAdmin). It allows users with this role to add and remove other users to the Member role on the same project.

To create a new role that can be assigned to a user-project pair, the following basic steps are needed:

1. Create a custom policy.json file for the Keystone component. On the node where the keystone-server role is deployed, copy the file to /etc/keystone/ CUSTOM_policy.json. For details, see Section 12.1, “Editing policy.json”.

2. Create a custom keystone_policy.json file for the Horizon component. On the node where the nova_dashboard-server role is deployed, copy the custom keystone_policy.json file to /srv/www/openstack-dashboard/openstack_dashboard/conf/ (default directory for policy files in Horizon). For details, see Section 12.2, “Editing keystone_policy.json”.

3. Make the Keystone component aware of the CUSTOM_policy.json file by editing and reapplying the Keystone barclamp. For details, see Section 12.3, “Adjusting the Keystone Barclamp Proposal”.

4. Make the Horizon component aware of the keystone_policy.json file by editing and reapplying the Horizon barclamp. For details, see Section 12.4, “Adjusting the Horizon Barclamp Proposal”.

12.1 Editing policy.json

The policy.json file is located in /etc/keystone/ on the node where the keystone-server role is deployed.

1. Copy /etc/keystone/policy.json and save it under a different name, for example CUSTOM_policy.json.
Important: Use Different File Name

If you use the same name as the original file, your custom file will be overwritten by the next package update.

2. To edit the file, open it in an editor of your choice.

3. To add the new role, enter the following two lines at the beginning of the file:

   ```
   {
       "subadmin": "role:ProjectAdmin",
       "projectadmin": "rule:subadmin and project_id:%(target.project.id)s",
   }
   ```

4. Adjust the other rules in the file accordingly:

   ```
   "identity:get_domain": "rule:admin_required or rule:subadmin",
   [...]
   "identity:get_project": "rule:admin_required or rule:projectadmin",
   [...]
   "identity:list_user_projects": "rule:admin_or_owner or rule:projectadmin",
   [...]
   "identity:update_project": "rule:admin_required or rule:projectadmin",
   [...]
   "identity:get_user": "rule:admin_required or rule:projectadmin",
   "identity:list_users": "rule:admin_required or rule:subadmin",
   [...]
   "identity:list_groups": "rule:admin_required or rule:subadmin",
   [...]
   "identity:list_roles": "rule:admin_required or rule:subadmin",
   [...]
   "identity:list_grants": "rule:admin_required or (rule:subadmin and project_id: %(target.project.id)s)",
   "identity:create_grant": "rule:admin_required or (rule:subadmin and project_id: %(target.project.id)s and 'Member':%(target.role.name)s)",
   "identity:revoke_grant": "rule:admin_required or (rule:subadmin and project_id: %(target.project.id)s and 'Member':%(target.role.name)s)",
   [...]
   "identity:list_role_assignments": "rule:admin_required or rule:subadmin",
   ```

5. Save the changes.
6. On the node where the `keystone-server` role is deployed, copy the file to `/etc/keystone/CUSTOM_policy.json`. Usually, the `keystone-server` role is deployed to a Control Node (or to a cluster, if you use a High Availability setup).

12.2 Editing `keystone_policy.json`

By default, the `keystone_policy.json` file is located in `/srv/www/openstack-dashboard/openstack_dashboard/conf/` on the node where the `nova_dashboard-server` role is deployed. It is similar (but not identical) to `policy.json` and defines which actions the user with a certain role is allowed to execute in Horizon. If the user is not allowed to execute a certain action, the OpenStack Dashboard will show an error message.

1. Copy `/srv/www/openstack-dashboard/openstack_dashboard/conf/keystone_policy.json` and save it under a different name, for example `CUSTOM_keystone_policy.json`.

⚠️ Important: Use Different File Name

If you use the same name as the original file, your custom file will be overwritten by the next package update.

2. To edit the file, open it in an editor of your choice.

3. To add the new role, enter the following two lines at the beginning of the file:

```
{
    "subadmin": "role:ProjectAdmin",
    "projectadmin": "rule:subadmin and project_id:%(target.project.id)s",
    [...]
```

4. Adjust the other rules in the file accordingly:

```
"identity:get_project": "rule:admin_required or rule:projectadmin",
[...]
"identity:list_user_projects": "rule:admin_or_owner or rule:projectadmin",
[...]
"identity:get_user": "rule:admin_required or rule:projectadmin",
"identity:list_users": "rule:admin_required or rule:subadmin",
[...]
"identity:list_roles": "rule:admin_required or rule:subadmin",
[...]
```

5. Save the changes and copy the file to /srv/www/openstack-dashboard/openstack_dashboard/conf/CUSTOM_keystone_policy.json on the node where the nova_dashboard-server role is deployed.

### 12.3 Adjusting the **Keystone** Barclamp Proposal

1. Log in to the Crowbar Web interface.
2. Select *Barclamps ➤ All barclamps*.
3. Go to the **Keystone** barclamp and click *Edit*.
4. In the *Attributes* section, click *Raw*. This shows the complete configuration file and allows you to edit it directly.
5. Adjust the `policy_file` parameter to point to the `CUSTOM_policy.json` file. For example:

   ```json
   {
     [...]  
     "policy_file": "mypolicy.json",
   }
   ```

6. *Save* and *Apply* the changes to the Keystone barclamp.

### 12.4 Adjusting the **Horizon** Barclamp Proposal

1. Log in to the Crowbar Web interface.
2. Select *Barclamps ➤ All barclamps*.
3. Go to the **Horizon** barclamp and click *Edit*.
4. In the *Attributes* section, click *Raw*. This shows the complete configuration file and allows you to edit it directly.
5. If needed, adjust the `policy_file_path` parameter to point to the directory where you copied the newly added `CUSTOM_keystone_policy.json` file. By default, its value is an empty string—this means that the default directory will be used.
6. Enter the new file's name as value of the `identity` parameter within the `policy_file` section (1):

```json
{
    "policy_file_path": "",
    "policy_file": {
        "identity": "mykeystone_policy.json",
        "compute": "nova_policy.json",
        "volume": "cinder_policy.json",
        "image": "glance_policy.json",
        "orchestration": "heat_policy.json",
        "network": "neutron_policy.json",
        "telemetry": "ceilometer_policy.json"
    }
}
```

7. *Save* and *Apply* the changes to the Horizon barclamp.
13 Configuration Files for OpenStack Services

Typically, each OpenStack component comes with a configuration file, for example: /etc/nova/nova.conf.

These configuration files can still be used. However, to configure an OpenStack component and its different components and roles, it is now preferred to add custom configuration file snippets to a `SERVICE.conf.d/` directory instead.

13.1 Default Configuration Files

By default, a configuration snippet with a basic configuration for each OpenStack component is available in the following directory:

```
/etc/SERVICE/SERVICE.conf.d/010-SERVICE.conf
```

For example: `/etc/nova/nova.conf.d/010-nova.conf`

Those files should not be modified.

13.2 Custom Configuration Files

To adjust or overwrite settings for the respective OpenStack component, add a custom configuration file to the same directory, `/etc/SERVICE/SERVICE.conf.d/`.

The same applies if you want to configure individual components or roles of an OpenStack component, like `nova-api` or `nova-compute`, for example. But in this case, add your custom configuration file to the following directory:

```
/etc/SERVICE/ROLE.conf.d/
```

For example: `/etc/nova/nova-api.conf.d/`

All custom configuration file must follow the rules listed in Section 13.3, “Naming Conventions for Custom Configuration Files”.

Section 13.3, “Naming Conventions for Custom Configuration Files”
13.3 Naming Conventions for Custom Configuration Files

Use the following rules for any configuration files you add:

- The file name must start with a 3-digit number and a dash. For example: `/etc/nova/nova.conf.d/500-nova.conf`
- The file must have the following file name extension: `.conf`
- For configuration management systems (for example: Crowbar, Salt), use numbers between 100 and 499.
- To override settings written by the configuration management system, use numbers starting from 500. They have higher priority.

13.4 Processing Order of Configuration Files

The configuration files are processed in the following order:

- `/etc/SERVICE/SERVICE.conf`
- `/etc/SERVICE/SERVICE.conf.d/*.conf` (in dictionary order)
- `/etc/SERVICE/ROLE.conf.d/*.conf` (in dictionary order)

If conflicting values are set for the same parameter, the last configured value overwrites all previous ones. In particular, values defined in

```
/etc/SERVICE/SERVICE.conf.d/XXX-SERVICE.conf
```

overwrite configuration values in

```
/etc/SERVICE/SERVICE.conf
```

13.5 For More Information

For details, also see `/etc/SERVICE/README.config`. 
IV Setting Up Non-OpenStack Services

14 Deploying the Non-OpenStack Components 255
14 Deploying the Non-OpenStack Components

In addition to OpenStack barclamps, SUSE OpenStack Cloud includes several components that can be configured using the appropriate Crowbar barclamps.

14.1 Tuning the Crowbar Service

Crowbar is a self-referential barclamp used for enabling other barclamps. By creating a Crowbar proposal, you can modify the default number of threads and workers. This way, you can scale the admin server according to the actual usage or the number of available cores of the admin node.

- Edit Proposal

![Crowbar](image)

**FIGURE 14.1: THE CROWBAR BARCLAMP: RAW MODE**

To change the default settings, create a Crowbar proposal and switch to the Raw view. Adjust then the workers and threads values. The number of threads should be set to the number of available cores. The default number of workers should be increased to 3 if the graphical interface becomes slow. Save and apply the changes using the appropriate buttons.

14.2 Configuring the NTP Service

The NTP service is responsible for keeping the clocks in your cloud servers in sync. Among other things, synchronized clocks ensure that the chef-client works properly. It also makes it easier to read logs from different nodes by correlating timestamps in them. The NTP component
is deployed on the Administration Server automatically using the default settings. The NTP barclamp can be used to specify IP addresses of the external NTP servers and assign specific roles to the desired nodes. The following parameter can be configured using the NTP barclamp:

**External servers**

A comma-separated list of IP addresses of external NTP servers.

The NTP service consists of two different roles:

**ntp-server**

A node that acts as an NTP server for NTP clients in your cloud. There can be more than one node with the ntp-server role in your cloud. In this scenario, the NTP server nodes can communicate with each other and the specified external servers to keep their time in sync.

**ntp-client**

The ntp-client role can be assigned to any node. Nodes with the ntp-client role assigned to them keep their time in sync using NTP servers in your cloud.
V  Maintenance and Support

15  SUSE OpenStack Cloud Maintenance  258
16  Log Files  294
17  Troubleshooting and Support  297
15 SUSE OpenStack Cloud Maintenance

15.1 Keeping the Nodes Up-To-Date

Keeping the nodes in SUSE OpenStack Cloud up-to-date requires an appropriate setup of the update and pool repositories and the deployment of either the Updater barclamp or the SUSE Manager barclamp. For details, see Section 5.2, “Update and Pool Repositories”, Section 10.4.1, “Deploying Node Updates with the Updater Barclamp”, and Section 10.4.2, “Configuring Node Updates with the SUSE Manager Client Barclamp”.

If one of those barclamps is deployed, patches are installed on the nodes. Installing patches that do not require a reboot of a node does not come with any service interruption. If a patch (for example, a kernel update) requires a reboot after the installation, services running on the machine that is rebooted will not be available within SUSE OpenStack Cloud. Therefore it is strongly recommended to install those patches during a maintenance window.

Note: No Maintenance Mode

As of SUSE OpenStack Cloud 7 it is not possible to put SUSE OpenStack Cloud into “Maintenance Mode”.

CONSEQUENCES WHEN REBOOTING NODES

Administration Server

While the Administration Server is offline, it is not possible to deploy new nodes. However, rebooting the Administration Server has no effect on starting instances or on instances already running.

Control Nodes

The consequences a reboot of a Control Node has, depends on the services running on that node:

Database, Keystone, RabbitMQ, Glance, Nova: No new instances can be started.

Swift: No object storage data is available. If Glance uses Swift, it will not be possible to start new instances.

Cinder, Ceph: No block storage data is available.
Neutron: No new instances can be started. On running instances the network will be unavailable.

Horizon: Horizon will be unavailable. Starting and managing instances can be done with the command line tools.

Compute Nodes
Whenever a Compute Node is rebooted, all instances running on that particular node will be shut down and must be manually restarted. Therefore it is recommended to “evacuate” the node by migrating instances to another node, before rebooting it.

15.2 Service Order on SUSE OpenStack Cloud Start-up or Shutdown

In case you need to restart your complete SUSE OpenStack Cloud (after a complete shut down or a power outage), the nodes and services need to be started in the following order:

SERVICE ORDER ON START-UP

1. Control Node/Cluster on which the Database is deployed

2. Control Node/Cluster on which RabbitMQ is deployed

3. Control Node/Cluster on which Keystone is deployed

4. For Swift:
   a. Storage Node on which the \texttt{swift-storage} role is deployed
   b. Storage Node on which the \texttt{swift-proxy} role is deployed

5. For Ceph:
   a. Storage Node on which the \texttt{ceph-mon} role is deployed
   b. Storage Node on which the \texttt{ceph-osd} role is deployed
   c. Storage Node on which the \texttt{ceph-radosgw} and \texttt{ceph-mds} roles are deployed (if deployed on different nodes: in either order)
6. Any remaining Control Node/Cluster. The following additional rules apply:

   - The Control Node/Cluster on which the `neutron-server` role is deployed needs to be started before starting the node/cluster on which the `neutron-l3` role is deployed.
   - The Control Node/Cluster on which the `nova-controller` role is deployed needs to be started before starting the node/cluster on which Heat is deployed.

7. Compute Nodes

If multiple roles are deployed on a single Control Node, the services are automatically started in the correct order on that node. If you have more than one node with multiple roles, make sure they are started as closely as possible to the order listed above.

If you need to shut down SUSE OpenStack Cloud, the nodes and services need to be terminated in reverse order than on start-up:

**SERVICE ORDER ON SHUT-DOWN**

1. Compute Nodes

2. Control Node/Cluster on which Heat is deployed

3. Control Node/Cluster on which the `nova-controller` role is deployed

4. Control Node/Cluster on which the `neutron-l3` role is deployed

5. All Control Node(s)/Cluster(s) on which neither of the following services is deployed: Database, RabbitMQ, and Keystone.

6. For Swift:
   
   a. Storage Node on which the `swift-proxy` role is deployed
   b. Storage Node on which the `swift-storage` role is deployed

7. For Ceph:
   
   a. Storage Node on which the `ceph-radosgw` and `ceph-mds` roles are deployed (if deployed on different nodes: in either order)
   b. Storage Node on which the `ceph-osd` role is deployed
   c. Storage Node on which the `ceph-mon` role is deployed

8. Control Node/Cluster on which Keystone is deployed
15.3 Upgrading from SUSE OpenStack Cloud 6 to SUSE OpenStack Cloud 7

Upgrading from SUSE OpenStack Cloud 6 to SUSE OpenStack Cloud 7 can either be done via a Web interface or from the command line. Starting with SUSE OpenStack Cloud 7, a “non-disruptive” update is supported, when the requirements listed at Non-Disruptive Upgrade Requirements are met. The non-disruptive upgrade guarantees a fully functional SUSE OpenStack Cloud operation during the upgrade procedure. The only feature that is not supported during the non-disruptive upgrade procedure is the deployment of additional nodes.

If the requirements for a non-disruptive upgrade are not met, the upgrade procedure will be done in normal mode. When live-migration is set up, instances will be migrated to another node, before the respective Compute Node will get updated to ensure continuous operation. However, you will not be able to access instances during the upgrade of the Control Nodes.

⚠️ Important: STONITH and Administration Server

Make sure that the STONITH mechanism in your cloud does not rely on the state of the Administration Server (for example, no SBD devices located there, and IPMI is not using the network connection relaying on the Administration Server). Otherwise, this may affect the clusters when the Administration Server is rebooted during the upgrade procedure.

15.3.1 Requirements

When starting the upgrade process, several checks are performed to determine whether the SUSE OpenStack Cloud is in an upgradeable state and whether a non-disruptive update would be supported:

GENERAL UPGRADE REQUIREMENTS

- All nodes need to have the latest SUSE OpenStack Cloud 6 updates and the latest SLES 12 SP1 updates installed. If this is not the case, refer to Section 10.4.1, “Deploying Node Updates with the Updater Barclamp” for instructions on how to update.
- All allocated nodes need to be turned on and have to be in state “ready”.

- All barclamp proposals need to have been successfully deployed. In case a proposal is in state “failed”, the upgrade procedure will refuse to start. Fix the issue or—if possible—remove the proposal.

- In case the pacemaker barclamp is deployed, all clusters need to be in a healthy state.

- The following repositories need to be available on a server that is accessible from the Administration Server. The HA repositories are only needed if you have an HA setup. It is recommended to use the same server that also hosts the respective repositories of the current version.

  - SUSE-OpenStack-Cloud-7-Pool
  - SUSE-OpenStack-Cloud-7-Update
  - SLES12-SP2-Pool
  - SLES12-SP2-Update
  - SLE-HA12-SP2-Pool (for HA setups only)
  - SLE-HA12-SP2-Update (for HA setups only)

  Do not add these repositories to the SUSE OpenStack Cloud repository configuration, yet. This needs to be done during the upgrade procedure.

  If you have deployed Ceph (SUSE Enterprise Storage 2.1) you also need to make the SUSE Enterprise Storage 4 repositories available:

  - SUSE-Enterprise-Storage-4-Pool
  - SUSE-Enterprise-Storage-4-Update

- Hybrid authentication with Keystone is not supported during upgrade. If you have configured this authentication method (see Using Hybrid Authentication in the SUSE OpenStack Cloud 6 Deployment Guide), you need to revert this setting prior to starting the upgrade. To do so, open the Keystone barclamp Attribute configuration in Raw mode.

  Set the identity and assignment drivers as follows:

  ```json
  "identity": {
    "driver": "sql"
  },
  "assignment": {
    "driver": "sql"
  },
  ```
SUSE OpenStack Cloud 7 comes with a new version of Swift. Replica handling has changed with this version—the number of replicas cannot be higher than the number of available disks. Check the Replica setting in the Swift barclamp prior to starting the upgrade. If it is higher than the number of available disks, adjust it to match the number of disks and redeploy the barclamp.

Note that a non-disruptive upgrade is not supported if the Cinder has been deployed with the raw devices or local file back-end. In this case, you have to perform a regular upgrade, or change the Cinder back-end for a non-disruptive upgrade.

If you have deployed Ceph (SUSE Enterprise Storage) you need to upgrade all Ceph nodes from version 2.1 to version 4 prior to starting the SUSE OpenStack Cloud upgrade. For details refer to https://www.suse.com/documentation/ses-4/book_storage_admin/data/ceph_upgrade_general.html.

1. Log in to the Crowbar Web interface for SUSE OpenStack Cloud and choose Utilities > Prepare Ceph Upgrade > Prepare for the Upgrade.

2. The following steps need to be performed on each Ceph node:
   a. Upgrade the current SLES SP1 to version 12 SP2. Refer to https://www.suse.com/documentation/sles-12/book_sle_deployment/data/cha_update_spmigration.html for more information on supported upgrade methods. Either use the YaST Online Migration tool or zypper migrate. Do not use the method using zypper dup (Migrating with Plain Zypper).
   b. Use YaST > Software > Software Repositories or the command line too zypper mr to replace the SUSE-Enterprise-Storage-2.1-Pool and SUSE-Enterprise-Storage-2.1-Update repositories with the respective repositories for version 4.
   c. Install the upgrade helper package:

```
root # zypper in ses-upgrade-helper
```

   d. Run the upgrade script:

```
root # upgrade-ses.sh
```
The script does a distribution upgrade of the node. After a reboot, the node comes up with SUSE Linux Enterprise Server 12 SP2 and SUSE Enterprise Storage 4 running.


NON-DISRUPTIVE UPGRADE REQUIREMENTS

- All Control Nodes need to be set up highly available.
- Live-migration support needs to be configured and enabled for the Compute Nodes. The amount of free resources (CPU and RAM) on the Compute Nodes needs to be sufficient to evacuate the nodes one by one.
- In case of a non-disruptive upgrade, Glance must be configured as a shared storage if the Default Storage Store value in the Glance is set to File.
- For a non-disruptive upgrade, only KVM-based Compute Nodes with the nova-computer-kvm role are allowed in SUSE OpenStack Cloud 6.
- If your SUSE OpenStack Cloud 6 setup is using LBaaS v1, you need to switch to LBaaS v2 manually. To do this, switch to the Raw view in the Neutron barclamp and set the use_lbaasv2 parameter to true. You must also re-create all objects manually. This includes load balancers, pools, and health monitors. Note that switching to LBaaS v2 is not required if your SUSE OpenStack Cloud 6 setup is configured for LBaaS v1 but is not using it actively.
- Non-disruptive upgrade is limited to the following cluster configurations:
  - Single cluster that has all supported controller roles on it
  - Two clusters where one only has neutron-network and the other one the rest of the controller roles.
  - Two clusters where one only has neutron-server plus neutron-network and the other one the rest of the controller roles.
  - Two clusters, where one cluster runs the database and RabbitMQ
  - Three clusters, where one cluster runs database and RabbitMQ, another cluster runs APIs, and the third cluster has the neutron-network role.
If your cluster configuration is not supported by the non-disruptive upgrade procedure, you can still perform a normal upgrade.

15.3.2 Upgrading Using the Web Interface

The Web interface features a wizard that guides you through the upgrade procedure.

Note: Canceling Upgrade

You can cancel the upgrade process by clicking Cancel Upgrade. Note that the upgrade operation can be canceled only before the Administration Server upgrade is started. When the upgrade has been canceled, the nodes return to the ready state. However any user modifications must be undone manually. This includes reverting repository configuration.

1. To start the upgrade procedure, open the Crowbar Web interface on the Administration Server and choose Utilities › Upgrade. Alternatively, point the browser directly to the upgrade wizard on the Administration Server, for example http://192.168.124.10/upgrade/.
2. Perform the preliminary checks to determine whether the upgrade requirements are met by clicking *Check* in *Step 1: Preliminary Checks*.

The Web interface displays the progress of the checks. Make sure all checks are passed (you should see a green marker next to each check). If errors occur, fix them and run the *Check* again. Do not proceed before all checks are passed.

3. When all checks in the previous step have passed, *Step 2: Upgrade Mode* shows the result of the upgrade analysis. You are informed about whether the upgrade procedure will continue in non-disruptive or in normal mode.

4. To start the upgrade process, click *Begin Upgrade* in *Step 3: Begin Upgrade*.

5. While the upgrade of the Administration Server is prepared, the upgrade wizard prompts you to *Download the Backup of the Administration Server*. Do this, and move the backup to a safe place. In case something goes wrong during the upgrade procedure of the Administration Server, you can restore the original state from this backup using the `crowbarctl backup restore NAME` command.
6. In the next step, check whether the repositories required for upgrading the Administration Server are available and updated. To do this, click Check. If the checks fail, add the software repositories as described in Chapter 5, Software Repository Setup of the Deployment Guide. Run the checks again, and click Next.
7. Click *Upgrade Administration Server* to upgrade and reboot the admin node. Note that this operation may take a while. When the Administration Server has been updated, click *Next*. 
8. Create a new database on the Administration Server by specifying the desired username and password. Click then Create Database. If you choose to host the database on a different host, create the database as described in Step 7 of Section 15.3.3, “Upgrading from the Command line”. Specify then the required database connection info in the Connect to Database section of the upgrade wizard.
9. In the next step, check whether the repositories required for upgrading all nodes are available and updated. To do this click Check. If the checks fail, add the software repositories as described in Chapter 5, Software Repository Setup of the Deployment Guide. Run the checks again, and click Next.
10. Next step is to stop the OpenStack services. Before you proceed, make sure that no changes are made to your cloud during and after stopping the services. Keep in mind that OpenStack API will not be available until the upgrade process is completed. When you are ready, click Next, wait till the services are stopped, and click Next.
Before upgrading the nodes, the wizard prompts you to back up the OpenStack PostgreSQL database. The database backup will be stored on the Administration Server, and it can be used to restore the database in case something goes wrong during the upgrade. To back up the database, click **Create Backup**. When the backup operation is finished, click **Next**.
12. The final step is upgrading the nodes. To start the upgrade, click **Upgrade Nodes**. Depending on the number of nodes, the upgrade process can take some time. When the upgrade is completed, press **Finish** to return to the Dashboard.
### 15.3.3 Upgrading from the Command line

The upgrade procedure on the command line is performed by using the program `crowbarctl`. For general help, run `crowbarctl help`. To get help on a certain subcommand, run `crowbarctl COMMAND help`.

To review the process of the upgrade procedure, you may call `crowbarctl upgrade status` at any time. Steps may have three states: pending, running, and passed.

1. To start the upgrade procedure from the command line, log in to the Administration Server as `root`.

---

**Note: Dealing with Errors**

If an error occurs during the upgrade process, the wizard displays a message with a description of the error and a possible solution. After fixing the error, re-run the step where the error occurred.
2. Perform the preliminary checks to determine whether the upgrade requirements are met:

```
root # crowbarctl upgrade prechecks
```

The command's result is shown in a table. Make sure the column `Errors` does not contain any entries. If not, make sure to fix the errors and restart the `precheck` command afterwards. Do not proceed before all checks are passed.

```
root # crowbarctl upgrade prechecks
+-------------------------------+--------+----------+--------+------+
| Check ID                      | Passed | Required | Errors | Help |
+-------------------------------+--------+----------+--------+------+
| network_checks                | true   | true     |        |      |
| cloud_healthy                 | true   | true     |        |      |
| maintenance_updates_installed | true   | true     |        |      |
| compute_status                | true   | false    |        |      |
| ha_configured                 | true   | false    |        |      |
| clusters_healthy              | true   | true     |        |      |
+-------------------------------+--------+----------+--------+------+
```

Depending on the outcome of the checks, it is automatically decided whether the upgrade procedure will continue in non-disruptive or in normal mode.
Tip: Forcing Normal Mode Upgrade

The non-disruptive update will take longer than an upgrade in normal mode, because it performs certain tasks in parallel which are done sequentially during the non-disruptive upgrade. What’s more, live-migrating guests to other Compute Nodes during the non-disruptive upgrade, takes additional time. Therefore, if a non-disruptive upgrade is not a requirement for you, you may want to switch to the normal upgrade mode, even if your setup supports the non-disruptive method. To force the normal upgrade mode, run:

```
root # crowbarctl upgrade mode normal
```

To query the current upgrade mode run:

```
root # crowbarctl upgrade mode
```

To switch back to the non-disruptive mode run:

```
root # crowbarctl upgrade mode non_disruptive
```

It is possible to call this command at any time during the upgrade process until the `services` step is started. After that point the upgrade mode can no longer be changed.

3. Prepare the nodes by transitioning them into the “upgrade” state and stopping the chef daemon:

```
root # crowbarctl upgrade prepare
```

Depending of the size of your SUSE OpenStack Cloud deployment, this step may take some time. Use the command `crowbarctl upgrade status` to monitor the status of the process named `steps.prepare.status`. It needs to be in state `passed` before you proceed:

```
root # crowbarctl upgrade status
+---------------------------------+----------------+
| Status                      | Value          |
+---------------------------------+----------------+
| current_step                  | backup_crowbar |
| current_substep               |                |
| current_node                  |                |
```
4. Create a backup of the existing Administration Server installation. In case something goes wrong during the upgrade procedure of the Administration Server you can restore the original state from this backup with the command `crowbarctl backup restore NAME`.

    root # crowbarctl upgrade backup crowbar

To list all existing backups including the one you have just created, run the following command:

    root # crowbarctl backup list

<table>
<thead>
<tr>
<th>Name</th>
<th>Created</th>
<th>Size</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>crowbar_upgrade_1486116507</td>
<td>2017-02-03T10:08:30.721Z</td>
<td>209</td>
<td>3.0</td>
</tr>
</tbody>
</table>

5. This step prepares the upgrade of the Administration Server by checking the availability of the update and pool repositories for SUSE OpenStack Cloud 7 and SUSE Linux Enterprise Server 12 SP2. Run the following command:

    root # crowbarctl upgrade repocheck crowbar

<table>
<thead>
<tr>
<th>Status</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>os.available</td>
<td>false</td>
</tr>
<tr>
<td>os.repos</td>
<td>SLES12-SP2-Pool</td>
</tr>
<tr>
<td></td>
<td>SLES12-SP2-Updates</td>
</tr>
<tr>
<td>os.errors.x86_64.missing</td>
<td>SLES12-SP2-Pool</td>
</tr>
<tr>
<td></td>
<td>SLES12-SP2-Updates</td>
</tr>
</tbody>
</table>
All four required repositories are reported as missing, because they have not yet been added to the Crowbar configuration. To add them to the Administration Server proceed as follows.

Note that this step is for setting up the repositories for the Administration Server, not for the nodes in SUSE OpenStack Cloud (this will be done in a subsequent step).

a. Start **YaST repositories** and proceed with **Continue**. Replace the repositories **SLES12-SP1-Pool** and **SLES12-SP1-Updates** with the respective SP2 repositories. If you prefer to use **zypper** over YaST, you may alternatively make the change using **zypper mr**.

b. Next, replace the **SUSE-OpenStack-Cloud-6** update and pool repositories with the respective SUSE OpenStack Cloud 7 versions.

c. Check for other (custom) repositories. All SLES SP1 repositories need to be replaced with the respective SLES SP2 version. In case no SP2 version exists, disable the repository—the respective packages from that repository will be deleted during the upgrade.

Once the repository configuration on the Administration Server has been updated, run the command to check the repositories again. If the configuration is correct, the result should look like the following:

```
root # crowbarctl upgrade repochek crowbar
+---------------------+--------------------------------+
| Status              | Value                          |
+---------------------+--------------------------------+
| os.available        | true                           |
| os.repos            | SLES12-SP2-Pool                |
|                     | SLES12-SP2-Updates             |
| openstack.available | true                           |
| openstack.repos     | SUSE-OpenStack-Cloud-7-Pool    |
|                     | SUSE-OpenStack-Cloud-7-Updates |
+---------------------+--------------------------------+```
6. Now that the repositories are available, the Administration Server itself will be upgraded. The update will run in the background using `zypper dup`. Once all packages have been upgraded, the Administration Server will be rebooted and you will be logged out. To start the upgrade run:

```
root # crowbarctl upgrade admin
```

7. Starting with SUSE OpenStack Cloud 7, Crowbar uses a PostgreSQL database to store its data. With this step, the database is created on the Administration Server. Alternatively a database on a remote host can be used.

To create the database on the Administration Server proceed as follows:

   a. Login to the Administration Server.

   b. To create the database on the Administration Server with the default credentials (`crowbar/crowbar`) for the database, run

```
root # crowbarctl upgrade database new
```

To use a different user name and password, run the following command instead:

```
root # crowbarctl upgrade database new \
--db-username=USERNAME --db-password=PASSWORD
```

   c. To connect to an existing PostgreSQL database, use the following command rather than creating a new database:

```
root # crowbarctl upgrade database connect --db-username=USERNAME \
--db-password=PASSWORD --database=DBNAME \
--host=IP_or_FQDN --port=PORT
```

8. After the Administration Server has been successfully updated, the Control Nodes and Compute Nodes will be upgraded. At first the availability of the repositories used to provide packages for the SUSE OpenStack Cloud nodes is tested.

   Note: Correct Metadata in the PTF Repository

   When adding new repositories to the nodes, make sure that the new PTF repository also contains correct metadata (even if it is empty). To do this, run the `createrepo-cloud-ptf` command.
Note that the configuration for these repositories differs from the one for the Administration Server that was already done in a previous step. In this step the repository locations are made available to Crowbar rather than to libzypp on the Administration Server. To check the repository configuration run the following command:

```
croot # crowbarctl upgrade repocheck nodes
```

| Status                          | Value                          |
|---------------------------------+--------------------------------|
| ha.available                    | false                          |
| ha.repos                        | SLE12-SP2-HA-Pool              |
|                                 | SLE12-SP2-HA-Updates           |
| ha.errors.x86_64.missing        | SLE12-SP2-HA-Pool              |
|                                 | SLE12-SP2-HA-Updates           |
| os.available                    | false                          |
| os.repos                        | SLE12-SP2-Pool                 |
|                                 | SLE12-SP2-Updates              |
| os.errors.x86_64.missing        | SLE12-SP2-Pool                 |
|                                 | SLE12-SP2-Updates              |
| openstack.available             | false                          |
| openstack.repos                 | SUSE-OpenStack-Cloud-7-Pool    |
|                                 | SUSE-OpenStack-Cloud-7-Updates |
| openstack.errors.x86_64.missing | SUSE-OpenStack-Cloud-7-Pool    |
|                                 | SUSE-OpenStack-Cloud-7-Updates |

To update the locations for the listed repositories, start `yast crowbar` and proceed as described in Section 7.4, “Repositories”.

Once the repository configuration for Crowbar has been updated, run the command to check the repositories again to determine, whether the current configuration is correct.

```
croot # crowbarctl upgrade repocheck nodes
```

| Status                          | Value                          |
|---------------------------------+--------------------------------|
| ha.available                    | true                           |
| ha.repos                        | SLE12-SP2-HA-Pool              |
|                                 | SLE12-SP2-HA-Updates           |
| os.available                    | true                           |
| os.repos                        | SLE12-SP2-Pool                 |
|                                 | SLE12-SP2-Updates              |
| openstack.available             | true                           |
| openstack.repos                 | SUSE-OpenStack-Cloud-7-Pool    |
Important: Shut Down Running instances in Normal Mode

If the upgrade is done in normal mode (prechecks compute_status and ha_configured have not been passed), you need to shut down all running instances now.

Important: Product Media Repository Copies

To PXE boot new nodes, an additional SUSE Linux Enterprise Server 12 SP2 repository—a copy of the installation system—is required. Although not required during the upgrade procedure, it is recommended to set up this directory now. Refer to Section 5.1, “Copying the Product Media Repositories” for details. If you had also copied the SUSE OpenStack Cloud 6 installation media (optional), you may also want to provide the SUSE OpenStack Cloud 7 the same way.

Once the upgrade procedure has been successfully finished, you may delete the previous copies of the installation media in /srv/tftpboot/suse-12.1/x86_64/install and /srv/tftpboot/suse-12.1/x86_64/repos/Cloud.

9. To ensure the status of the nodes does not change during the upgrade process, the majority of the OpenStack services will be stopped on the nodes now. As a result, the OpenStack API will no longer be accessible. The instances, however, will continue to run and will also be accessible. Run the following command:

   root # crowbarctl upgrade services

   This step takes a while to finish. Monitor the process by running crowbarctl upgrade status. Do not proceed before steps.services.status is set to passed.

10. The last step before upgrading the nodes is to make a backup of the OpenStack PostgreSQL database. The database dump will be stored on the Administration Server and can be used to restore the database in case something goes wrong during the upgrade.

   root # crowbarctl upgrade backup openstack

11. The final step of the upgrade procedure is upgrading the nodes. To start the process, enter:

   root # crowbarctl upgrade nodes all
The upgrade process runs in the background and can be queried with `crowbarctl upgrade status`. Depending on the size of your SUSE OpenStack Cloud it may take several hours, especially when performing a non-disruptive update. In that case, the Compute Nodes are updated one-by-one after instances have been live-migrated to other nodes. Instead of upgrading all nodes you may also upgrade the Control Nodes first and individual Compute Nodes afterwards. Refer to `crowbarctl upgrade nodes --help` for details. If you choose this approach, you can use the `crowbarctl upgrade status` command to monitor the upgrade process. The output of this command contains the following entries:

- **current_node_action**
  The current action applied to the node.

- **current_substep**
  Shows the current substep of the node upgrade step. For example, for the `crowbarctl upgrade nodes controllers`, the `current_substep` entry displays the `controller_nodes` status when upgrading controllers.

After the controllers have been upgraded, the `steps.nodes.status` entry in the output displays the `running` status. Check then the status of the `current_substep_status` entry. If it displays `finished`, you can move to the next step of upgrading the Compute Nodes.

When upgrading individual Compute Nodes using the `crowbarctl upgrade nodes NODE_NAME` command, the `current_substep_status` entry changes to `node_finished` when the upgrade of a single node is done. After all nodes have been upgraded, the `current_substep_status` entry displays `finished`.

**Note: Dealing with Errors**

If an error occurs during the upgrade process, the output of the `crowbarctl upgrade status` provides a detailed description of the failure. In most cases, both the output and the error message offer enough information for fixing the issue. When the problem has been solved, run the previously issued upgrade command to resume the upgrade process.
15.4  Upgrading to an HA Setup

There are a few issues to pay attention to when making an existing SUSE OpenStack Cloud deployment highly available (by setting up HA clusters and moving roles to these clusters). To make existing services highly available, proceed as follows. Note that moving to an HA setup cannot be done without SUSE OpenStack Cloud service interruption, because it requires OpenStack components to be restarted.

⚠️ Important: Team Network Mode is Required for HA

Team network mode is required for an HA setup of SUSE OpenStack Cloud. If you are planning to move your cloud to an HA setup at a later point in time, make sure to deploy SUSE OpenStack Cloud with team network mode from the beginning. Otherwise a migration to an HA setup is not supported.

1. Make sure to have read the sections Section 1.6, “HA Setup” and Section 2.6, “High Availability” of this manual and taken any appropriate action.

2. Make the HA repositories available on the Administration Server as described in Section 5.2, “Update and Pool Repositories”. Run the command `chef-client` afterward.

3. Set up your cluster(s) as described in Section 11.1, “Deploying Pacemaker (Optional, HA Setup Only)”.

4. To move a particular role from a regular control node to a cluster, you need to stop the associated service(s) before re-deploying the role on a cluster:

   a. Log in to each node as `root` on which the role is deployed and stop its associated service(s) (a role can have multiple services). Do so by running the service’s start/stop script with the stop argument, for example:

   ```
   root # rcopenstack-keystone stop
   ```

   See Section 11.24, “Roles and Services in SUSE OpenStack Cloud” for a list of roles, services and start/stop scripts.
b. The following roles need additional treatment:

**database-server (Database barclamp)**

1. Stop the database on the node the Database barclamp is deployed with the command:

   ```
   root # rcpostgresql stop
   ```

2. Copy `/var/lib/pgsql` to a temporary location on the node, for example:

   ```
   root # cp -ax /var/lib/pgsql /tmp
   ```

3. Redeploy the Database barclamp to the cluster. The original node may also be part of this cluster.

4. Log in to a cluster node and run the following command to determine which cluster node runs the `postgresql` service:

   ```
   root # crm_mon -l
   ```

5. Log in to the cluster node running `postgresql`.

6. Stop the `postgresql` service:

   ```
   root # crm resource stop postgresql
   ```

7. Copy the data backed up earlier to the cluster node:

   ```
   root # rsync -av --delete
   NODE_WITH_BACKUP:/tmp/pgsql/ /var/lib/pgsql/
   ```

8. Restart the `postgresql` service:

   ```
   root # crm resource start postgresql
   ```

   Copy the content of `/var/lib/pgsql/data/` from the original database node to the cluster node with DRBD or shared storage.
keystone-server (Keystone barclamp)

If using Keystone with PKI tokens, the PKI keys on all nodes need to be re-generated. This can be achieved by removing the contents of `/var/cache/*/keystone-signing/` on the nodes. Use a command similar to the following on the Administration Server as `root`:

```
root # for NODE in NODE1 NODE2 NODE3; do
    ssh $NODE rm /var/cache/*/keystone-signing/*
done
```

5. Go to the barclamp featuring the role you want to move to the cluster. From the left side of the Deployment section, remove the node the role is currently running on. Replace it with a cluster from the Available Clusters section. Then apply the proposal and verify that application succeeded via the Crowbar Web interface. You can also check the cluster status via Hawk or the `crm` / `crm_mon` CLI tools.

6. Repeat these steps for all roles you want to move to cluster. See Section 2.6.2.1, “Control Node(s)—Avoiding Points of Failure” for a list of services with HA support.

⚠️ Important: SSL Certificates

Moving to an HA setup also requires to create SSL certificates for nodes in the cluster that run services using SSL. Certificates need to be issued for the generated names (see Important: Proposal Name) and for all public names you have configured in the cluster.

⚠️ Important: Service Management on the Cluster

After a role has been deployed on a cluster, its services are managed by the HA software. You must never manually start or stop an HA-managed service or configure it to start on boot. Services may only be started or stopped by using the cluster management tools Hawk or the crm shell. See http://www.suse.com/documentation/sle-ha-12/book_sleha/data/sec_ha_config Basics_resources.html for more information.
15.5 Recovering Clusters to a Healthy State

If one node in your cluster refuses to rejoin the cluster, it is most likely that the node has not been shut down cleanly. This can either happen because of manual intervention or because the node has been fenced (shut down) by the STONITH mechanism of the cluster. Fencing is used to protect the integrity of data in case of a split-brain scenario.

The following sections refer to problems with the Control Nodes cluster and show how to recover your degraded cluster to full strength. This takes the following basic steps:

1. Re-adding the Node to the Cluster
2. Recovering Crowbar and Chef
3. In addition, you may need to reset resource failcounts to allow resources to start on the node you have re-added to the cluster. See Section 15.5.4, “Cleaning Up Resources”.
4. In addition, you may need to manually remove the maintenance mode flag from a node. See Section 15.5.5, “Removing the Maintenance Mode Flag from a Node”.

For a list of possible symptoms that help you to diagnose a degraded cluster, see Section 15.5.1, “Symptoms of a Degraded Control Node Cluster”.

15.5.1 Symptoms of a Degraded Control Node Cluster

The following incidents may occur if a Control Node in your cluster has been shut down in an unclean state:

- A VM reboots although the SUSE OpenStack Cloud administrator did not trigger this action.
- One of the Control Node in the Crowbar Web interface is in status Problem, signified by a red dot next to the node.
- The Hawk Web interface stops responding on one of the Control Nodes, while it is still responding on the others.
- The SSH connection to one of the Control Nodes freezes.
- The OpenStack components stop responding for a short while.
15.5.2 Re-adding the Node to the Cluster

1. Reboot the node.

2. Connect to the node via SSH from the Administration Server.

3. If you have a 2-node cluster with the STONITH: Do not start corosync on boot after fencing option set to Automatic, remove the block file that is created on a node during start of the cluster service:

```
root # rm /var/spool/corosync/block_automatic_start
```

The block file avoids STONITH deathmatches for 2-node clusters (where each node kills the other one, resulting in both nodes rebooting all the time). When Corosync shuts down cleanly, the block file is automatically removed. Otherwise the block file is still present and prevents the cluster service from (re-)starting on that node. Alternatively, bypass the block file by starting the cluster service on the cluster node before reconnecting the node to Crowbar in the next section (see Section 15.5.3, “Recovering Crowbar and Chef”):

```
root # systemctl start pacemaker
```

15.5.3 Recovering Crowbar and Chef

Making the Pacemaker node rejoin the cluster is not enough. All nodes in the cloud (including the Administration Server) need to be aware that this node is back online. This requires the following steps for Crowbar and Chef:

1. Log in to the node you have re-added to the cluster.

2. Re-register the node with Crowbar by executing:

```
root # systemctl start crowbar_join
```

3. Log in to each of the other Control Nodes.

4. Trigger a Chef run:

```
root # chef-client
```
15.5.4  Cleaning Up Resources

A resource will be automatically restarted if it fails, but each failure increases the resource's failcount. If a migration-threshold has been set for the resource, the node will no longer run the resource when the number of failures reaches the migration threshold. To allow the resource to start again on the node, reset the resource's failcount by cleaning up the resource manually. You can clean up individual resources by using the Hawk Web interface or all in one go as described below:

1. Log in to any one of the cluster nodes which is currently online in the cluster. (You can check this via `crm_mon`.)

2. Clean-up all stopped resources with the following command:

\[
\text{root} \# \text{crm\_resource -o | \}
\text{awk '}/\tStopped |Timed Out/ { print $1 }' | \}
\text{xargs -r -n1 crm\_resource\ cleanup}
\]

15.5.5  Removing the Maintenance Mode Flag from a Node

During normal operation, chef-client sometimes needs to place a node into maintenance mode. The node is kept in maintenance mode until the chef-client run finishes. However, if the chef-client run fails, the node may be left in maintenance mode. In that case, the cluster management tools like crmsh or Hawk will show all resources on that node as unmanaged. To remove the maintenance flag:

1. Log in the cluster node.

2. Disable the maintenance mode with:

\[
\text{root} \# \text{crm\ node\ ready}
\]

15.5.6  Recovering From an Unresolvable DRBD Split Brain Situation

Although policies to automatically resolve a DRBD split brain situations exist, there are situations which require to be resolved manually. Such a situation is indicated by a Kernel message like:

```
kernel: block drbd0: Split-Brain detected, dropping connection!
```
To resolve the split brain you need to choose a node which data modifications will be discarded. These modifications will be replaced by the data from the “healthy” node and will not be recoverable, so make sure to choose the right node. If in doubt, make a backup of the node before starting the recovery process. Proceed as follows:

1. Put the cluster in maintenance mode:

   ```
   root # crm configure property maintenance-mode=true
   ```

2. Check if the chose node is in primary role:

   ```
   root # systemctl status drbd
   ```

3. If it is in primary role, stop all services using this resource and switch it to secondary role. If the node already is in secondary role, skip this step.

   ```
   root # drbdadm secondary RESOURCE
   ```

4. Check if a node is in state `WFConnection` by looking at the output of `systemctl status drbd`.

5. If the node is in state `WFConnection` disconnect the resource:

   ```
   root # drbdadm disconnect RESOURCE
   ```

6. Discard all modifications on the chosen node. This step is irreversible, the modifications on the chosen node will be lost!

   ```
   root # drbdadm -- --discard-my-data connect RESOURCE
   ```

7. If the other (healthy) node is in state `WFConnection`, synchronization to the chosen node will start automatically. If not, reconnect the healthy node to start the synchronization:

   ```
   root # drbdadm connect RESOURCE
   ```

   During the synchronization all data modifications on the chosen node will be overwritten with the data from the healthy node.

8. When the synchronization has finished, reset the cluster to normal mode:

   ```
   root # crm configure property maintenance-mode=false
   ```
15.6 FAQ

The following FAQ section offers tips and tricks related to the upgrade procedure.

Q: How can I override default timeouts for specific upgrade actions?
A: It is possible to override the default timeout values for several upgrade actions by creating the `/etc/crowbar/upgrade_timeouts.yml` file and specify the desired actions and their values. Below is a list of supported settings and their brief descriptions.

- `:prepare_repositories`
  Delete the old repositories and set the new repositories required for the upgrade

- `:pre_upgrade`
  Prepare node resources for the upgrade

- `:upgrade_os`
  Update all system packages

- `:post_upgrade`
  Restore DRBD/Pacemaker actions after the packages have been upgraded to their original state

- `:evacuate_host`
  Migrate all running instances from the Compute Node that is going to be upgraded

- `:chef_upgraded`
  Rejoin Crowbar and run the chef-client

- `:router_migration`
  Migrate all Neutron routers

- `:delete_pacemaker_resources`
  Delete old pacemaker resources in order to generate new ones for the upgrade

- `:delete_cinder_services`
  Delete Cinder services in order to generate new ones for the upgrade

Below is the list of supported options with their default values in seconds:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>:prepare_repositories</td>
<td>120</td>
</tr>
<tr>
<td>:pre_upgrade</td>
<td>300</td>
</tr>
<tr>
<td>:upgrade_os</td>
<td>900</td>
</tr>
</tbody>
</table>
15.7 Backing Up and Restoring the Administration Server

Backing Up and Restoring the Administration Server can either be done via the Crowbar Web interface or on the Administration Server's command line via the `crowbarctl backup` command. Both tools provide the same functionality.

15.7.1 Backup and Restore via the Crowbar Web interface

To use the Web interface for backing up and restoring the Administration Server, go to the Crowbar Web interface on the Administration Server, for example `http://192.168.124.10/`. Log in as user `crowbar`. The password is `crowbar` by default, if you have not changed it. Go to `Utilities › Backup & Restore`.

To create a backup, click the respective button. Provide a descriptive name (allowed characters are letters, numbers, dashes and underscores) and confirm with `Create Backup`. Alternatively, you can upload a backup, for example from a previous installation.
Existing backups are listed with name and creation date. For each backup, three actions are available:

**Download**

Download a copy of the backup file. The TAR archive you receive with this download can be uploaded again via *Upload Backup Image*.

**Restore**

Restore the backup.

**Delete**

Delete the backup.

**FIGURE 15.2: BACKUP AND RESTORE: LIST OF BACKUPS**

### 15.7.2 Backup and Restore via the Command Line

Backing up and restoring the Administration Server from the command line can be done with the command `crowbarctl backup`. For getting general help, run the command `crowbarctl --help backup`, help on a subcommand is available by running `crowbarctl SUBCOMMAND --help`. The following commands for creating and managing backups exist:

**crowbarctl backup create NAME**

Create a new backup named `NAME`. It will be stored at `/var/lib/crowbar/backup`.

**crowbarctl backup [--yes] NAME**

Restore the backup named `NAME`. You will be asked for confirmation before any existing proposals will get overwritten. If using the option `--yes`, confirmations are tuned off and the restore is forced.
crowbarctl backup delete NAME
Delete the backup named NAME.

crowbarctl backup download NAME [FILE]
Download the backup named NAME. If you specify the optional [FILE], the download is written to the specified file. Otherwise it is saved to the current working directory with an automatically generated file name. If specifying - for [FILE], the output is written to STDOUT.

crowbarctl backup list
List existing backups. You can optionally specify different output formats and filters—refer to crowbarctl backup list --help for details.

crowbarctl backup upload FILE
Upload a backup from FILE.
16 Log Files

Find a list of log files below, sorted according to the nodes where they can be found.

16.1 On the Administration Server

- Crowbar Web Interface: /var/log/crowbar/production.log
- Chef server: /var/log/chef/server.log
- Chef expander: /var/log/chef/expander.log
- Chef client (for the Administration Server only): /var/log/chef/client.log
- Upgrade log files (only available if the Administration Server has been upgraded from a previous version using `suse-cloud-upgrade`): /var/log/crowbar/upgrade/*
- Apache SOLR (Chef's search server): /var/log/chef/solr.log
- HTTP (AutoYaST) installation server for provisioner barclamp: /var/log/apache2/provisioner-{access,error}_log
- Log file from mirroring SMT repositories (optional): /var/log/smt/smt-mirror.log
- Default SUSE log files: /var/log/messages, /var/log/zypper.log etc.
- Syslogs for all nodes: /var/log/nodes/*.log (these are collected via remote syslogging)
- Other client node log files saved on the Administration Server:
  - /var/log/crowbar/sledgehammer/d*.log: Initial Chef client run on nodes booted using PXE prior to discovery by Crowbar.
  - /var/log/crowbar/chef-client/d*.log: Output from Chef client when proposals are applied to nodes. This is the first place to look if a barclamp proposal fails to apply.
16.2 On All Other Crowbar Nodes

Logs for when the node registers with the Administration Server:

- /var/log/crowbar/crowbar_join/errlog
- /var/log/crowbar/crowbar_join/$TOPIC.{log,err}: STDOUT/STDERR from running commands associated with $TOPIC when the node joins the Crowbar cluster. $TOPIC can be:
  - zypper: package management activity
  - ifup: network configuration activity
  - Chef: Chef client activity
  - time: starting of ntp client
- Chef client log: /var/log/chef/client.log
- Default SUSE log files: /var/log/messages, /var/log/zypper.log etc.

16.3 On the Control Node(s)

On setups with multiple Control Nodes log files for certain services (such as keystone.log) are only available on the node where the respective service is deployed.

- /var/log/apache2/openstack-dashboard-*: Logs for the OpenStack Dashboard
- /var/log/ceilometer/*: Ceilometer log files.
- /var/log/cinder/*: Cinder log files.
- /var/log/glance/*: Glance; log files.
- /var/log/heat/*: Heat log files.
- /var/log/keystone/*: Keystone log files.
- /var/log/neutron/*: Neutron log files.
- /var/log/nova/*: various log files relating to Nova services.
• /var/log/rabbitmq/*: RabbitMQ log files.
• /var/log/swift/*: Swift log files.

16.4 On Compute Nodes
/var/log/nova/nova-compute.log

16.5 On Nodes with Ceph Barclamp
/var/log/ceph/*.*.log
17 Troubleshooting and Support

Find solutions for the most common pitfalls and technical details on how to create a support request for SUSE OpenStack Cloud here.

17.1 FAQ

If your problem is not mentioned here, checking the log files on either the Administration Server or the OpenStack nodes may help. A list of log files is available at Chapter 16, Log Files.

17.1.1 Admin Node Deployment

Q: What to do if the initial SUSE OpenStack Cloud Crowbar installation on the Administration Server fails?
A: Check the installation routine’s log file at /var/log/crowbar/install.log for error messages.

Q: What to do if the initial SUSE OpenStack Cloud Crowbar installation on the Administration Server fails while deploying the IPMI/BMC network?
A: As of SUSE OpenStack Cloud 7, it is assumed that each machine can be accessed directly via IPMI/BMC. However, this is not the case on certain blade hardware, where several nodes are accessed via a common adapter. Such a hardware setup causes an error on deploying the IPMI/BMC network. You need to disable the IPMI deployment running the following command:

```
/opt/dell/bin/json-edit -r -a "attributes.ipmi.bmc_enable" \ 
-v "false" /opt/dell/chef/data_bags/crowbar/bc-template-ipmi.json
```

Re-run the SUSE OpenStack Cloud Crowbar installation after having disabled the IPMI deployment.
Q: Why am I not able to reach the Administration Server from outside the admin network via the bastion network?

A: If `route -n` shows no gateway for the bastion network, check the value of the following entries in `/etc/crowbar/network.json`: "router_pref" and "router_pref". Make sure the value for the bastion network's "router_pref" is set to a lower value than "router_pref" for the admin network.

If the router preference is set correctly, `route -n` shows a gateway for the bastion network. In case the Administration Server is still not accessible via its admin network address (for example, 192.168.124.10), you need to disable route verification (`rp_filter`). Do so by running the following command on the Administration Server:

```
    echo 0 > /proc/sys/net/ipv4/conf/all/rp_filter
```

If this setting solves the problem, make it permanent by editing `/etc/sysctl.conf` and setting the value for `net.ipv4.conf.all.rp_filter` to 0.

Q: Can I change the host name of the Administration Server?

A: No, after you have run the SUSE OpenStack Cloud Crowbar installation you cannot change the host name anymore. Services like Crowbar, Chef, and the RabbitMQ will fail when having changed the host name.

Q: What to do when browsing the Chef Web UI gives a Tampered with cookie error?

A: You probably have an old cookie in your browser from a previous Chef installation on the same IP. Remove the cookie named `_chef_server_session_id` and try again.

Q: How to make custom software repositories from an external server (for example a remote SMT or SUSE Manager server) available for the nodes?

A: Custom repositories need to be added using the YaST Crowbar module:

1. Start the YaST Crowbar module and switch to the Repositories tab:  
   YaST › Miscellaneous › Crowbar › Repositories.

2. Choose Add Repositories

3. Enter the following data:

   Name
   A unique name to identify the repository.
**URL**

Link or path to the repository.

**Ask On Error**

Access errors to a repository are silently ignored by default. To ensure that you get notified of these errors, set the **Ask On Error** flag.

**Target Platform/Architecture**

Currently only repositories for **SLE 12 SP2** on the **x86_64** architecture are supported. Make sure to select both options.

4. Save your settings selecting **OK**.

---

### 17.1.2 OpenStack Node Deployment

**Q:** How can I log in to a node as root?

**A:** By default you cannot directly log in to a node as root, because the nodes were set up without a root password. You can only log in via SSH from the Administration Server. You should be able to log in to a node with **ssh root@NAME** where **NAME** is the name (alias) of the node.

If name resolution does not work, go to the Crowbar Web interface and open the **Node Dashboard**. Click the name of the node and look for its **admin (eth0) IP Address**. Log in to that IP address via SSH as user root.

**Q:** What to do if a node refuses to boot or boots into a previous installation?

**A:** Make sure to change the boot order in the BIOS of the node, so that the first boot option is to boot from the network/boot using PXE.
Q: What to do if a node hangs during hardware discovery after the very first boot using PXE into the “SLEShammer” image?

A: The root login is enabled at a very early state in discovery mode, so chances are high that you can log in for debugging purposes as described in Q. If logging in as root does not work, you need to set the root password manually. This can either be done by setting the password via the Kernel command line as explained in Q, or by creating a hook as explained below:

1. Create a directory on the Administration Server named /updates/discovering-pre

```
mkdir /updates/discovering-pre
```

2. Create a hook script setpw.hook in the directory created in the previous step:

```
cat > /updates/discovering-pre/setpw.hook <<EOF
#!/bin/sh
echo "root:linux" | chpasswd
EOF
```

3. Make the script executable:

```
chmod a+x /updates/discovering-pre/setpw.hook
```

If you are still cannot log in, you very likely hit a bug in the discovery image. Report it at http://bugzilla.suse.com/.

Q: How to provide Kernel Parameters for the SLEShammer Discovery Image?

A: Kernel Parameters for the SLEShammer Discovery Image can be provided via the Provisioner barclamp. The following example shows how to set a root password:

1. Open a browser and point it to the Crowbar Web interface available on the Administration Server, for example http://192.168.124.10/. Log in as user crowbar. The password is crowbar by default, if you have not changed it.

2. Open Barclamps → Crowbar and click Edit in the Provisioner row.

3. Click Raw in the Attributes section and add the Kernel parameter(s) to the "discovery": { "append": "" } line, for example;

```
"discovery": {
```
4. Apply the proposal without changing the assignments in the Deployment section.

Q: What to do when a deployed node fails to boot using PXE with the following error message: “Could not find kernel image: ../suse-12.2/install/boot/x86_64/loader/linux”?
A: The installation repository on the Administration Server at /srv/tftpboot/suse-12.2/install has not been set up correctly to contain the SUSE Linux Enterprise Server 12 SP2 installation media. Review the instructions at Section 5.1, “Copying the Product Media Repositories”.

Q: Why does my deployed node hang at Unpacking initramfs during boot when using PXE?
A: The node probably does not have enough RAM. You need at least 4 GB RAM for the deployment process to work.

Q: What to do if a node is reported to be in the state Problem? What to do if a node hangs at “Executing AutoYaST script: /usr/sbin/crowbar_join --setup” after the installation has been finished?
A: Be patient—the AutoYaST script may take a while to finish. If it really hangs, log in to the node as root (see Q: for details). Check for error messages at the end of /var/log/crowbar/crowbar_join/chef.log. Fix the errors and restart the AutoYaST script by running the following command:

crowbar_join --start

If successful, the node will be listed in state Ready, when the script has finished.

In cases where the initial --setup wasn't able to complete successfully, you can rerun that once after the previous issue is solved.

If that does not help or if the log does not provide useful information, proceed as follows:

1. Log in to the Administration Server and run the following command:

crowbar crowbar transition $NODE

$NODE needs to be replaced by the alias name you have given to the node when having installed it. Note that this name needs to be prefixed with $.

2. Log in to the node and run chef-client.
3. Check the output of the command for failures and error messages and try to fix the cause of these messages.

4. Reboot the node.

If the node is in a state where login in from the Administration Server is not possible, you need to create a root password for it as described in Direct root Login. Now re-install the node by going to the node on the Crowbar Web interface and clicking Reinstall. After having been re-installed, the node will hang again, but now you can log in and check the log files to find the cause.

Q: Where to find more information when applying a barclamp proposal fails?
A: Check the Chef client log files on the Administration Server located at /var/log/crowbar/chef-client/d*.log. Further information is available from the Chef client log files located on the node(s) affected by the proposal (/var/log/chef/client.log), and from the log files of the service that failed to be deployed. Additional information may be gained from the Crowbar Web UI log files on the Administration Server. For a list of log file locations refer to Chapter 16, Log Files.

Q: How to Prevent the Administration Server from Installing the OpenStack Nodes (Disable PXE and DNS Services)?
A: By default, the OpenStack nodes are installed by booting a discovery image from the Administration Server using PXE. They get allocated and then boot via PXE into an automatic installation (see Section 10.2, “Node Installation” for details). To install the OpenStack nodes manually or with a custom provisioning tool, you need to disable the PXE boot service and the DNS service on the Administration Server.

As a consequence you also need to provide an external DNS server. Such a server needs to comply with the following requirements:

- It needs to handle all domain to IP requests for SUSE OpenStack Cloud.
- It needs to handle all IP to domain requests for SUSE OpenStack Cloud.
- It needs to forward unknown requests to other DNS servers.
To disable the PXE and DNS services when setting up the Administration Server, proceed as follows:

**PROCEDURE 17.1: DISABLING PXE/DNS WHEN SETTING UP THE ADMINISTRATION SERVER**

The following steps need to be performed *before* starting the SUSE OpenStack Cloud Crowbar installation.

1. **Create the file `/etc/crowbar/dns.json` with the following content:**

   ```json
   {
     "attributes": {
       "dns": {
         "nameservers": [ "DNS_SERVER", "DNS_SERVER2" ],
         "auto_assign_server": false
       }
     }
   }
   ``

   Replace `DNS_SERVER` and `DNS_SERVER2` with the IP address(es) of the external DNS server(s). Specifying more than one server is optional.

2. **Create the file `/etc/crowbar/provisioner.json` with the following content:**

   ```json
   {
     "attributes": {
       "provisioner": {
         "enable_pxe": false
       }
     }
   }
   ``

3. If these files are present when the SUSE OpenStack Cloud Crowbar installation is started, the Administration Server will be set up using external DNS services and no PXE boot server.
In case you already have deployed SUSE OpenStack Cloud, proceed as follows to disable the DNS and PXE services on the Administration Server:

**PROCEDURE 17.2: DISABLING PXE/DNS ON AN ADMINISTRATION SERVER RUNNING CROWBAR**

1. Open a browser and point it to the Crowbar Web interface available on the Administration Server, for example `http://192.168.124.10/`. Log in as user _crowbar_. The password is _crowbar_ by default, if you have not changed it.

2. Open Barclamps > Crowbar and click Edit in the Provisioner row.

3. Click Raw in the Attributes section and change the value for `enable_pxe` to _false_:

   ```json
   "enable_pxe": false,
   ```

4. Apply the proposal without changing the assignments in the Deployment section.

5. Change to the DNS barclamp via Barclamps > Crowbar and click Edit in the DNS row.

6. Click Raw in the Attributes section. Change the value for `auto_assign_server` to _false_ and add the address(es) for the external name server(s):

   ```json
   "auto_assign_server": false,
   "nameservers": [
   "DNS_SERVER",
   "DNS_SERVER2"
   ],
   ```

   Replace _DNS_SERVER_ and _DNS_SERVER2_ with the IP address(es) of the external DNS server(s). Specifying more than one server is optional.

7. Save your changes, but do not apply them, yet!

8. In the Deployment section of the barclamp remove all nodes from the `dns-server` role, but do not change the assignments for the `dns-client` role.

9. Apply the barclamp.

10. When the DNS barclamp has been successfully applied, log in to the Administration Server and stop the DNS service:

    ```bash
    systemctl stop named
    ```
Now that the PXE and DNS services are disabled you can install SUSE Linux Enterprise Server 12 SP2 on the OpenStack nodes. When a node is ready, add it to the pool of nodes as described in Section 10.3, “Converting Existing SUSE Linux Enterprise Server 12 SP2 Machines Into SUSE OpenStack Cloud Nodes”.

Q: I have installed a new hard disk on a node that was already deployed. Why is it ignored by Crowbar?
A: When adding a new hard disk to a node that has already been deployed, it can take up to 15 minutes before the new disk is detected.

Q: How to install additional packages (for example a driver) when nodes are deployed?
A: SUSE OpenStack Cloud offers the possibility to install additional packages that are not part of the default scope of packages installed on the OpenStack nodes. This is for example required if your hardware is only supported by a third party driver. It is also useful if your setup requires to install additional tools that would otherwise need to be installed manually.

Prerequisite for using this feature is that the packages are available in a repository known on the Administration Server. Refer to Q: for details, if the packages you want to install are not part of the repositories already configured.

To add packages for installation on node deployment, proceed as follows:

1. Open a browser and point it to the Crowbar Web interface on the Administration Server, for example http://192.168.124.10/. Log in as user crowbar. The password is crowbar by default, if you have not changed it during the installation.

2. Go to Barclamps › Crowbar and click the Edit button for Provisioner.

3. Next click Raw in the Attributes page to open an editable view of the provisioner configuration.

4. Add the following JSON code before the last closing curly bracket (replace the PACKAGE placeholders with real package names):

```
"packages": {
    "suse-12.2": ["PACKAGE_1", "PACKAGE_2"],
}
```
Note that these packages will get installed on all OpenStack nodes. If the change to the Provisioner barclamp is made after nodes have already been deployed, the packages will be installed on the affected nodes with the next run of Chef or `crowbar-register`. Package names will be validated against the package naming guidelines to prevent script-injection.

### 17.1.3 Miscellaneous

**Q:** *How to change the **nova** default configuration?*

**A:** To change the `nova` default configuration, the respective Chef cookbook file needs to be adjusted. This file is stored on the Administration Server at `/opt/dell/chef/cookbooks/nova/templates/default/nova.conf.erb`. To activate changes to these files, the following command needs to be executed:

```
barclamp_install.rb --rpm /opt/dell/barclamps/openstack/
```

**Q:** *How to change the Keystone credentials after the Keystone barclamp has been deployed?*

**A:** To change the credentials for the Keystone administrator (**admin**) or the regular user (**crowbar** by default), proceed as follows:

1. Log in to the Control Node on which Keystone is deployed as user **root** via the Administration Server.

2. In a shell, source the OpenStack RC file for the project that you want to upload an image to. For details, refer to *Set environment variables using the OpenStack RC file* (http://docs.openstack.org/user-guide/common/cli_set_environment_variables_using_openstack_rc.html) in the OpenStack documentation.

3. Enter the following command to change the **PASSWORD** for the administrator or the regular user (**USER**):

```
keystone-manage bootstrap --bootstrap-password PASSWORD \ 
--bootstrap-username USER
```

For a complete list of command line options, run `keystone-manage bootstrap --help`. Make sure to start the command with a Space to make sure the password does not appear in the command history.
4. Access the Keystone barclamp on the Crowbar Web interface by going to
   Barclamps > OpenStack and click Edit for the Keystone barclamp.

5. Enter the new password for the same user you specified on the command line before.

6. Activate the change by clicking Apply. When the proposal has been re-applied, the
   password has changed and can be used.

17.2 Support

Before contacting support to help you with a problem on SUSE OpenStack Cloud, it is strongly
recommended that you gather as much information about your system and the problem as
possible. For this purpose, SUSE OpenStack Cloud ships with a tool called supportconfig. It
gathers system information such as the current kernel version being used, the hardware, RPM
database, partitions, and other items. supportconfig also collects the most important log files,
making it easier for the supporters to identify and solve your problem.

It is recommended to always run supportconfig on the Administration Server and on
the Control Node(s). If a Compute Node or a Storage Node is part of the problem, run
supportconfig on the affected node as well. For details on how to run supportconfig, see

17.2.1 Applying PTFs (Program Temporary Fixes) Provided by the
SUSE L3 Support

Under certain circumstances, the SUSE support may provide temporary fixes, the so-called PTFs,
to customers with an L3 support contract. These PTFs are provided as RPM packages. To make
them available on all nodes in SUSE OpenStack Cloud, proceed as follows.

1. Download the packages from the location provided by the SUSE L3 Support to a temporary
   location on the Administration Server.

2. Move the packages from the temporary download location to the following directories on
   the Administration Server:

   “noarch” packages (*.noarch.rpm):

   /srv/tftpboot/suse-12.2/x86_64/repos/PTF/rpm/noarch/
Applying PTFs (Program Temporary Fixes) Provided by the SUSE L3 Support

SUSE OpenStack Cloud 7

- /srv/tftpboot/suse-12.2/s390x/repos/PTF/rpm/noarch/
- “x86_64” packages (*.x86_64.rpm)
  /srv/tftpboot/suse-12.2/x86_64/repos/PTF/rpm/x86_64/
- “s390x” packages (*.s390x.rpm)
  /srv/tftpboot/suse-12.2/s390x/repos/PTF/rpm/s390x/

3. Create or update the repository metadata:

   createrepo-cloud-ptf

4. The repositories are now set up and are available for all nodes in SUSE OpenStack Cloud except for the Administration Server. In case the PTF also contains packages to be installed on the Administration Server, make the repository available on the Administration Server as well:

   zypper ar -f /srv/tftpboot/suse-12.2/x86_64/repos/PTF PTF

5. To deploy the updates, proceed as described in Section 10.4.1, “Deploying Node Updates with the Updater Barclamp”. Alternatively, run **zypper up** manually on each node.
VI  Proof of Concepts Deployments

18  Building a SUSE OpenStack Cloud Test lab  310
18  Building a SUSE OpenStack Cloud Test lab

18.1  Document Scope

This document will help you to prepare SUSE and prospective customers for a Proof of Concept (POC) deployment of SUSE OpenStack Cloud. This document provides specific details for a POC deployment. It serves as an addition to the SUSE OpenStack Cloud Deployment Guide.

18.2  SUSE OpenStack Cloud Key Features

The latest version 7 of SUSE OpenStack Cloud supports all OpenStack Newton release components for best-in-class capabilities to deploy an open source private cloud. Here is a brief overview of SUSE OpenStack Cloud features and functionality.

- **Installation Framework** Integration with the Crowbar project speeds up and simplifies installation and administration of your physical cloud infrastructure.

- **Mixed Hypervisor Support** Enhanced virtualization management through support for multi-hypervisor environments that use KVM, Xen, Microsoft Hyper-V, VMware vSphere, and IBM z/VM.

- **High Availability** Automated deployment and configuration of control plane clusters. This ensures continuous access to business services and delivery of enterprise-grade Service Level Agreements.

- **High availability for KVM and Xen Compute Nodes and Workloads** Enhanced support for critical workloads not designed for cloud architectures.

- **Ceph** Integration with SUSE Enterprise Storage provides a streamlined deployment of a single solution for distributed block, object, and virtual machine image storage.

- **Docker Support** Gives the ability to build and run innovative containerized applications through Magnum integration.

- **Scalability** Cloud control system designed to grow with your demands.

- **Open APIs** Using the standard APIs, customers can enhance and integrate OpenStack with third-party software.
• **Block Storage Plug-Ins** A wide range of block storage plug-ins available from storage vendors like EMC, NetApp, and others.

• **Networking Plug-Ins** SUSE OpenStack Cloud natively supports open source SDN’s via Open vSwitch, harnessing the power of DPDK in SUSE Linux Enterprise Server 12 SP2. For more flexibility, SUSE OpenStack Cloud provides support for third-party tools from Cisco, Midokura, Infoblox, Nuage Networks, PLUMgrid and even VLAN bridging solutions.

• **Award-Winning Support** SUSE OpenStack Cloud is backed by 24x7 worldwide-technical support.

• **Full Integration with SUSE Update Processes** Easily maintain and patch cloud deployments.

• **Non-Disruptive Upgrade Capabilities** Simplify migration to future SUSE OpenStack Cloud releases.

18.3 **Main Components**

The following is a brief overview of components for setting up and managing SUSE OpenStack Cloud.

**Administration Server** provides all services needed to manage and deploy all other nodes in the cloud. Most of these services are provided by the Crowbar tool. Together with Chef, Crowbar automates all the required installation and configuration tasks. The services provided by the server include DHCP, DNS, NTP, PXE, TFTP.

The Administration Server also hosts the software repositories for SUSE Linux Enterprise Server and SUSE OpenStack Cloud. These repositories are required for node deployment. If no other sources for the software repositories are available, the Administration Server can also host the Subscription Management Tool (SMT), providing up-to-date repositories with updates and patches for all nodes.

**Control Nodes** host all OpenStack services for orchestrating virtual machines deployed on the compute nodes. OpenStack in SUSE OpenStack Cloud uses a PostgreSQL database that is also hosted on the Control Nodes. When deployed, the following OpenStack components run on the Control Nodes:

- PostgreSQL
- Image (Glance)
- Identity (Keystone)
• Networking (Neutron)
• Block Storage (Cinder)
• Shared Storage (Manila)
• OpenStack Dashboard
• Keystone
• Pacemaker
• Nova controller
• Message broker
• Swift proxy server
• Hawk monitor
• Heat an orchestration engine
• Ceilometer server and agents
• Trove a Database-as-a-Service

A single Control Node running multiple services can become a performance bottleneck, especially in large SUSE OpenStack Cloud deployments. It is possible to distribute the services listed above on more than one Control Node. This includes scenarios where each service runs on its own node.

*Compute Nodes* are a pool of machines for running instances. These machines require an adequate number of CPUs and enough RAM to start several instances. They also need to provide sufficient storage. A Control Node distributes instances within the pool of compute nodes and provides the necessary network resources. The OpenStack service Compute (Nova) runs on Compute Nodes and provides means for setting up, starting, and stopping virtual machines. SUSE OpenStack Cloud supports several hypervisors such as KVM, VMware vSphere, and Xen. Each image that can be started with an instance is bound to one hypervisor. Each Compute Node can only run one hypervisor at a time. For a POC deployment, SUSE recommends to leverage KVM as hypervisor of choice.

*Optional Storage Nodes* Storage Node is a pool of machines that provide object or block storage. Object storage supports several back-ends.
18.4 Objectives and Preparations

Although each customer has a specific set of requirements, it is important to have 3-5 clearly-defined objectives. This objectives should be provable, measurable and have a specific time scale in which proof is required. The objectives can be adjusted and amended, provided that both parties are agreed on the changes. For a full record of the performed and completed work, it is recommended to use this document for making amendments to the proof requirements.

Before deploying SUSE OpenStack Cloud, it is necessary to meet certain requirements and consider various aspects of the deployment. Some decisions need to be made before deploying SUSE OpenStack Cloud, since they cannot be changed afterward.

The following procedure covers preparatory steps for the deployment of SUSE OpenStack Cloud along with the software and hardware components required for a successful implementation.

**PROCEDURE 18.1: PREREQUISITES**

1. Make sure that the required hardware and virtual machines are provided and configured
2. Check that PXE boot from the first NIC in BIOS is enabled (legacy BIOS mode and no UEFI)
3. Ensure that the hardware is certified for use with SUSE Linux Enterprise Server 12 SP2
4. Check that booting from ISO images works
5. Make sure that all NICs are visible
6. Install `sar/sysstat` for performance troubleshooting
7. Ensure that all needed subscription records are available. Depending on the size of the cloud to be implemented, this includes the following:
   - SUSE OpenStack Cloud subscriptions
   - SUSE Linux Enterprise Server subscriptions
   - SLES High Availability Extensions (HAE) subscriptions
   - Optional SUSE Enterprise Storage (SES) subscriptions
8. Check whether all needed channels and updates are available either locally or remotely. The following options can be used to provide the repositories and channels:
   - SMT server on the administration server (optional step)
   - Existing SMT server
   - Existing SUSE Manager

9. Make sure that networking planned and wired according to the specified layout or topology

10. If SUSE Enterprise Storage is a part of the POC deployment, all nodes must be installed, configured, and optimized before installing SUSE OpenStack Cloud. Storage services (Nova, Cinder, Glance, Cluster Stonith,) required by SUSE OpenStack Cloud 6 must be available and accessible.

11. Check whether network.json is configured according to the specific requirements. This step must be discussed and completed in advance (see Section 18.6.1, “The network.json Network Control File” and https://www.suse.com/documentation/suse-openstack-cloud-6/book_cloud_deploy/data/book_cloud_deploy.html).

18.5  Hardware and Software Matrix

The hardware and software matrix below has the following requirements:

- All machines must run SLES 12 SP1 Server Operating System
- KVM or Xen Hypervisors must be running on bare metal
- The Admin Node can be deployed on a KVM or VMWare virtual machine

The sizing recommendation includes an Admin Node (bare metal or VM), Controller Nodes, Compute Nodes to host all your OpenStack services, and the optional SES Nodes. The matrix also provides information on the necessary network equipment and bandwidth requirements.

Note: About Recommendations

These recommendations are based on real-world use cases and experience gathered by SUSE in the last three years. However, these recommendations are meant to serve as guidelines and not as requirements. The final sizing decision depends on the actual
customer workloads and architecture, which must be discussed in depth. The type and number of hardware components such as hard disks, CPU, and RAM also serve as starting points for further discussion and evaluation depending on workloads.

<table>
<thead>
<tr>
<th>Number of Units</th>
<th>Function</th>
<th>Configuration</th>
<th>OpenStack Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Compute nodes</td>
<td>2 hard disks</td>
<td>Nova-multi-compute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Quad Core Intel or AMD processors</td>
<td>ML2 Agent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>256GB RAM</td>
<td>OVS Agent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 or 4 10Gb Ethernet NICs</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Admin Node or VM</td>
<td>2 hard disks</td>
<td>Crowbar, tftpboot, PXE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Quad Core Intel or AMD processor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8GB RAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 or 4 10Gb Ethernet NICs</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Control node</td>
<td>2 hard disks</td>
<td>Horizon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Quad Core Intel or AMD processors</td>
<td>Rabbit MQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x64GB RAM</td>
<td>Nova multi-controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 or 4 10Gb Ethernet NICs</td>
<td>Cinder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heat</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ceilometer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neutron-Server</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ML2 Agent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Keystone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PostgreSQL DB</td>
</tr>
<tr>
<td>Number of Units</td>
<td>Function</td>
<td>Configuration</td>
<td>OpenStack Component</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neutron ML2 Plugin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L2/L3 Agents</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DHCP Agent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CloudFoundry</td>
<td>Pivotal CloudFoundry</td>
</tr>
<tr>
<td>4</td>
<td>Storage Server – SUSE Enterprise Storage</td>
<td>2 hard disks</td>
<td>Admin – Server</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Quad Core Intel or AMD processors</td>
<td>MON - Server</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64GB RAM</td>
<td>OSD - Server</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 or 4 10Gb Ethernet NICs</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Switch min. 10 GbE ports</td>
<td>All VLANs/Tagged or Untagged</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OS: SLES12 SP1</td>
<td></td>
</tr>
<tr>
<td>DHCP, DNS</td>
<td></td>
<td>Isolated within administrator network</td>
<td></td>
</tr>
<tr>
<td>HA</td>
<td></td>
<td>2 Control Nodes</td>
<td></td>
</tr>
</tbody>
</table>

### 18.6 Network Topology

Configuring and managing your network are two of the most challenging tasks of deploying a SUSE OpenStack Cloud. Therefore they need to be planned carefully. Just as OpenStack provides flexibility and agility for compute and storage, SDN in OpenStack gives cloud administrators more control over their networks. However, building and manually configuring the virtual
network infrastructure for OpenStack is difficult and error-prone. SUSE OpenStack Cloud solve this by delivering a structured installation process for OpenStack which could be customized to adapt the given environment.

18.6.1 The network.json Network Control File

The deployment of the network configuration is done while setting up an Administrator Node. As a requirement for the deployment, the entire network configuration needs to be specified in the network.json file.

The Crowbar network barclamp provides two functions for the system:

- Initialization of network interfaces on the Crowbar managed systems
- Address pool management. While the addresses can be managed with the YaST Crowbar module, complex network setups require to manually edit the network barclamp template file /etc/crowbar/network.json. For more detailed explanation and description see https://www.suse.com/documentation/suse-openstack-cloud-6/pdfdoc/book_cloud_deploy/book_cloud_deploy.pdf#page=240&zoom=auto,63.779,788.031

The network definitions contain IP address assignments, the bridge and VLAN setup, and settings for the router preference. Each network is also assigned to a logical interface. These VLAN IDs and networks can be modified according to the customer's environment.

18.6.2 The Network Mode

SUSE OpenStack Cloud supports three network modes: single, dual and team. As of SUSE OpenStack Cloud 6, the network mode is applied to all nodes and the Administration Server. That means that all machines need to meet the hardware requirements for the chosen mode. The following network modes are available:

- **Single Network Mode** In single mode one Ethernet card is used for all the traffic.
- **Dual Network Mode** Dual mode needs two Ethernet cards (on all nodes but Administration Server). This allows to completely separate traffic to and from the administrator network and to and from the public network.
- **Team Network Mode** The team mode is almost identical to single mode, except it combines several Ethernet cards to a so-called bond (network device bonding). Team mode requires two or more Ethernet cards.
Note: Team Network Mode for HA

In an HA configuration, make sure that SUSE OpenStack Cloud is deployed with the team network mode.

FIGURE 18.1: NETWORK MODES

18.6.3 Default Layout

The following networks are pre-defined for use with SUSE OpenStack Cloud.

TABLE 18.2: ADMINISTRATOR NETWORK LAYOUT

<table>
<thead>
<tr>
<th>Network Name</th>
<th>VLAN</th>
<th>IP Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>No - untagged</td>
<td>192.168.124.1</td>
</tr>
<tr>
<td>Admin</td>
<td>No - untagged</td>
<td>192.168.124.10 – 192.168.124.11</td>
</tr>
<tr>
<td>DHCP</td>
<td>No - untagged</td>
<td>192.168.124.21 – 192.168.124.80</td>
</tr>
</tbody>
</table>
### Table 18.3: Private Network Layout

<table>
<thead>
<tr>
<th>Network Name</th>
<th>VLAN</th>
<th>IP Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMC VLAN Host</td>
<td>100</td>
<td>192.168.124.61</td>
</tr>
</tbody>
</table>

### Table 18.4: Public/Nova Floating Network Layout/Externally Provided

<table>
<thead>
<tr>
<th>Network Name</th>
<th>VLAN</th>
<th>IP Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>500</td>
<td>192.168.123.1 – 192.168.123.49</td>
</tr>
<tr>
<td>DHCP</td>
<td>500</td>
<td>192.168.123.50 – 192.168.123.254</td>
</tr>
</tbody>
</table>

### Table 18.5: Storage Network Layout

<table>
<thead>
<tr>
<th>Network Name</th>
<th>VLAN</th>
<th>IP Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>200</td>
<td>192.168.125.2 – 192.168.125.254</td>
</tr>
</tbody>
</table>
The default IP addresses can be changed using YaST Crowbar module or by editing the appropriate JSON file. It is also possible to customize the network setup for your environment. This can be done by editing the network barclamp template.

18.7 Network Architecture

SUSE OpenStack Cloud requires a complex network setup consisting of several networks configured during installation. These networks are reserved for cloud usage. Access to these networks from an existing network requires a router.

⚠️ Important: Network Configuration with Crowbar

The network configuration on the nodes in the SUSE OpenStack Cloud network is controlled by Crowbar. Any network configuration changes done outside Crowbar will be automatically overwritten. After the cloud is deployed, network settings cannot be changed without reinstalling the cloud.

Controller Node serves as the front-end for API calls to the compute, image, volume, network, and orchestration services. In addition to that, the node hosts multiple Neutron plug-ins and agents. The node also aggregates all route traffic within tenant and between tenant network and outside world.

Compute Node creates on-demand virtual machines using chosen hypervisor for customer application.

Administrator Node automates the installation processes via Crowbar using pre-defined cookbooks for configuring and deploying a Control Node and Compute and Network Nodes.

Note: DHCP/PXE Environment for Administrator Node

The Administrator Node requires a dedicated local and isolated DHCP/PXE environment controlled by Crowbar.

Optional storage access. Cinder is used for block storage access exposed through iSCSI or NFS (FC connection is not supported in the current release of OpenStack). This could also be a dedicated Storage Node.
Note: High-Performance Network for Ceph

Implementation of Ceph as a cloud storage requires a high-performance network. The Storage Net in the following network topology is a placeholder for upcoming Ceph implementation (for use with an established 40GbE network). It is recommended to run a Ceph Storage Cluster with two networks: a public network and a cluster network. To support two networks, each Ceph node must have more than one NIC.

Network mode. What mode to choose for a POC deployment depends on the High Availability (HA) requirements. The team network mode is required for an HA setup of SUSE OpenStack Cloud.

18.7.1 Network Architecture: Pre-Defined VLANs

VLAN support for the administrator network must be handled at the switch level. The following networks are predefined when setting up SUSE OpenStack Cloud. The listed default IP addresses can be changed using the YaST Crowbar module. It is also possible to customize the network setup.

Note: Limitations of the Default Network Proposal

The default network proposal described below allows maximum 80 Compute Nodes, 61 floating IP addresses, and 204 addresses in the nova_fixed network. To overcome these limitations, you need to reconfigure the network setup by using appropriate address ranges manually.
A private network to access the Administration Server and all nodes for administration purposes. The default setup lets you also access the Baseboard Management Controller (BMC) data via Intelligent Platform Management Interface (IPMI) from this network. If required, BMC access can be swapped to a separate network.

You have the following options for controlling access to this network:

- Do not allow access from the outside and keep the administrator network completely separated
- Allow access to the administration server from a single network (for example, your company's administration network) via the “bastion network” option configured on an additional network card with a fixed IP address
- Allow access from one or more networks via a gateway
Storage Network (192.168.125/24)
Private SUSE OpenStack Cloud internal virtual network. This network is used by Ceph and Swift only. It should not be accessed by users.

Private Network (nova-fixed, 192.168.123/24)
Private SUSE OpenStack Cloud internal virtual network. This network is used for communication between instances and provides them with access to the outside world. SUSE OpenStack Cloud automatically provides the required gateway.

Public Network (nova-floating, public, 192.168.126/24)
The only public network provided by SUSE OpenStack Cloud. On this network, you can access the Nova Dashboard and all instances (provided they are equipped with a floating IP). This network can only be accessed via a gateway that needs to be provided externally. All SUSE OpenStack Cloud users and administrators need to be able to access the public network.

Software Defined Network (os_sdn, 192.168.130/24)
Private SUSE OpenStack Cloud internal virtual network. This network is used when Neutron is configured to use _openvswitch_ with GRE tunneling for the virtual networks. It should not be accessed by users.

SUSE OpenStack Cloud supports different network modes: single, dual, and team. Starting with SUSE OpenStack Cloud 6, the networking mode is applied to all nodes and the Administration Server. This means that all machines need to meet the hardware requirements for the chosen mode. The network mode can be configured using the YaST Crowbar module (see https://www.suse.com/documentation/suse-openstack-cloud-6/book_cloud_deploy/data/sec_depl_adm_inst_crowbar.html). The network mode cannot be changed after the cloud is deployed.

More flexible network mode setups can be configured by editing the Crowbar network configuration files (see https://www.suse.com/documentation/suse-openstack-cloud-6/book_cloud_deploy/data/app_deploy_network_json.html for more information). SUSE or a partner can assist you in creating a custom setup within the scope of a consulting services agreement. For more information on SUSE consulting, visit http://www.suse.com/consulting/.
18.8 Services Architecture

SUSE OpenStack Cloud is based on SUSE Linux Enterprise Server 12 SP2, OpenStack, Crowbar and Chef. SUSE Linux Enterprise Server is used as the underlying operating system for all infrastructure nodes. Crowbar and Chef are used to automatically deploy and manage the OpenStack nodes from a central Administration Server.

![Services Architecture Diagram]

FIGURE 18.3: SERVICES ARCHITECTURE
18.9 Proof of Concept Test Cases

After you have successfully deployed OpenStack, you need to test the environment by using either the Dashboard or the command line interface. This document provides the most important procedures and steps to perform functional tests agreed upon. A detailed list of test case should be provided with this document.

Note: About Test Cases

All test cases are work in progress and by no means complete. Test cases have to be formulated by the entire team according to the requirements and type of workloads.

18.9.1 Basic Test Cases

Add your own test cases here.

18.9.2 Advanced Test Cases

Add your own test cases here.
A  VMware vSphere Installation Instructions

SUSE OpenStack Cloud supports the Nova Compute VMware vCenter driver. It enables access to advanced features such as vMotion, High Availability, and Dynamic Resource Scheduling (DRS). However, VMware vSphere is not supported “natively” by SUSE OpenStack Cloud—it rather delegates requests to an existing vCenter. It requires preparations at the vCenter and post install adjustments of the Compute Node.

A.1  Requirements

The following requirements must be met to successfully deploy a Nova Compute VMware node:

- VMware vSphere vCenter 5.1 or higher
- VMware vSphere ESXi nodes 5.1 or higher
- A separate Compute Node that acts as a proxy to vCenter is required. Minimum system requirements for this node are:
  - CPU: x86_64 with 2 cores (4 recommended)
  - RAM: 2 GB (8 GB recommended)
  - Disk space: 4 GB (30 GB recommended)
  - See Section A.3, “Finishing the Nova Compute VMware Node Installation” for setup instructions.
- Neutron must not be deployed with the `openvswitch with gre` plug-in, a VLAN setup is required.
- Security groups are only supported when running VMware NSX. You need to deploy Neutron with the `vmware` plug-in to have security group support. This is also a prerequisite for `gre` tunnel support.

A.2  Preparing the VMware vCenter Server

SUSE OpenStack Cloud requires the VMware vCenter server to run version 5.1 or better. You need to create a single data center for SUSE OpenStack Cloud (multiple data centers are currently not supported):

1. Log in to the vCenter Server using the vSphere Web Client
2. Choose *Hosts and Clusters* and create a single *Datacenter*.

3. Set up a *New Cluster* which has *DRS* enabled.

4. Set *Automation Level* to *Fully Automated* and *Migration Threshold* to *Aggressive*.

5. Create shared storage. Only shared storage is supported and data stores must be shared among all hosts in a cluster. It is recommended to remove data stores not intended for OpenStack from clusters being configured for OpenStack. Multiple data stores can be used per cluster.

6. Create a port group with the same name as the *vmware.integration.bridge* value in *nova.conf* (default is br-int). All VM NICs are attached to this port group for management by the OpenStack networking plug-in. Assign the same VLAN ID as for the neutron network. On the default network setup this is the same VLAN ID as for the *nova.fixed* network. Use *YaST > Miscellaneous > Crowbar > Networks* to look up the VLAN ID.

### A.3 Finishing the Nova Compute VMware Node Installation

Deploy Nova as described in *Section 11.10, “Deploying Nova”* on a single Compute Node and fill in the *VMWare vCenter Settings* attributes:

**vCenter IP Address**
- IP address of the vCenter server.

**vCenter Username / vCenter Password**
- vCenter login credentials.

**Cluster Names**
- A comma-separated list of cluster names you have added on the vCenter server.

**RegEx to match the name of a datastore**
- Regular expression to match the name of a data store. If you have several data stores, this option allows you to specify the data stores to use with Nova Compute. For example, the value `nas.*` selects all data stores that have a name starting with *nas*. If this option is omitted, Nova Compute uses the first data store returned by the vSphere API. However, it is recommended not to use this option and to remove data stores that are not intended for OpenStack instead.
**VLAN Interface**

The physical interface that is to be used for VLAN networking. The default value of `vmnic0` references the first available interface (“eth0”). `vmnic1` would be the second interface (“eth1”).

**CA file for verifying the vCenter certificate**

Absolute path to the vCenter CA certificate.

**vCenter SSL Certificate is insecure (for instance, self-signed)**

Default value: `false` (the CA truststore is used for verification). Set this option to `true` when using self-signed certificates to disable certificate checks. This setting is for testing purposes only and must not be used in production environments!

---

**A.4 Making the Nova Compute VMware Node Highly Available**

OpenStack does not support deploying multiple VMware Compute Nodes. As a workaround, set up an instance on the vSphere Cluster, register it with Crowbar and deploy the `nova-compute-vmware` role on this node:

1. Create an instance on the vSphere Cluster and install SUSE Linux Enterprise Server 12 SP2.
2. Configure a network interface in a way that it can access the SUSE OpenStack Cloud admin network.
3. Enable the High-Availability flag in vCenter for this instance.

4. Follow the instructions at Section 10.3, “Converting Existing SUSE Linux Enterprise Server 12 SP2 Machines Into SUSE OpenStack Cloud Nodes” to register the instance with the Administration Server and add it to the pool of nodes available for deployment.

5. Deploy the `nova-compute-vmware` role on the new node as described in Section 11.10, “Deploying Nova” and Section A.3, “Finishing the Nova Compute VMware Node Installation”.
B Using Cisco Nexus Switches with Neutron

B.1 Requirements

The following requirements must be met to use Cisco Nexus switches with Neutron:

- Cisco Nexus series 3000, 5000 or 7000

- All Compute Nodes must be equipped with at least two network cards.

- The switch needs to have the XML management interface enabled. SSH access to the management interface must be enabled (refer to the switch's documentation for details).

- Enable VLAN trunking for all Neutron managed VLANs on the switch port to which the controller node running Neutron is connected to.

- Before deploying Neutron, check if VLAN configurations for Neutron managed VLANs already exist on the switch (for example, from a previous SUSE OpenStack Cloud deployment). If yes, delete them via the switch’s management interface prior to deploying Neutron.

- When using the Cisco plugin, Neutron reconfigures the VLAN trunk configuration on all ports used for the nova-fixed traffic (the traffic between the instances). This requires to configure separate network interfaces exclusively used by nova-fixed. This can be achieved by adjusting /etc/crowbar/network.json (refer to Section 7.5, “Custom Network Configuration”). The following example shows an appropriate configuration for dual mode, where nova-fixed has been mapped to conduit intf1 and all other networks to other conduits. Configuration attributes not relevant in this context have been replaced with ... .

EXAMPLE B.1: EXCLUSIVELY MAPPING NOVA-FIXED TO CONDUIT INTF1 IN DUAL MODE

```json
{
    "attributes" : {
        "network" : {
            "conduit_map" : [
                ...
            ],
            "mode" : "single",
            "networks" : {
                "nova_fixed" : {
                    "conduit" : "intf1"
                }
            }
        }
    }
}
```
Make a note of all switch ports to which the interfaces using the `nova-fixed` network on the Compute Nodes are connected. This information will be needed when deploying Neutron.

### B.2 Deploying Neutron with the Cisco Plugin

1. Create a Neutron barclamp proposal in the Crowbar Web interface.

2. As the `Plugin`, select `ml2`.
3. As Modular Layer 2 mechanism drive, select `cisco_nexus`.

4. In Modular Layer2 type drivers, select `vlan`.

5. In the Cisco Switch Credentials table, enter the IP Address, the SSH Port number and the login credentials for the switch’s management interface. If you have multiple switches, open a new row in the table by clicking Add and enter the data for another switch.

6. Choose whether to encrypt public communication (HTTPS) or not (HTTP). If choosing HTTPS, refer to SSL Support: Protocol for configuration details.

7. Choose a node for deployment and Apply the proposal.
8. Deploy Nova (see Section 11.10, “Deploying Nova”), Horizon (see Section 11.11, “Deploying Horizon (OpenStack Dashboard)” and all other remaining barclamps.

9. When all barclamps have been deployed, return to the Neutron barclamp by choosing Barclamps > OpenStack > Neutron > Edit. The proposal now contains an additional table named Assign Switch Ports, listing all Compute Nodes.
   For each Compute Node enter the switch it is connected to and the port number from the notes you took earlier. The values need to be entered like the following: 1/13 or Eth1/20.

10. When you have entered the data for all Compute Nodes, re-apply the proposal.

⚠️ Important: Deploying Additional Compute Nodes

Whenever you deploy additional Compute Nodes to an active SUSE OpenStack Cloud deployment using the Cisco plugin with Neutron, update the Neutron barclamp proposal by entering their port data as described in the previous step.

🔍 Note: Verifying the Setup

To verify if Neutron was correctly deployed, do the following:

1. Launch an instance (refer to the End User Guide, chapter Launch and manage instances for instructions).

2. Find out which VLAN was assigned to the network by running the command `neutron net-show fixed`. The result lists a segmentation_id matching the VLAN.

3. Log in to the switch’s management interface and list the VLAN configuration. If the setup was deployed correctly, the port of the Compute Node the instance is running on, is in trunk mode for the matching VLAN.
C  Documentation Updates

This chapter lists content changes for this document since the release of SUSE® OpenStack Cloud 2.0.

This manual was updated on the following dates:

- Section C.1, “July 2017 (Maintenance Release SUSE OpenStack Cloud 7)”
- Section C.2, “April 2017 (Maintenance Release SUSE OpenStack Cloud 7)”
- Section C.3, “February 2017 (Initial Release SUSE OpenStack Cloud 7)”
- Section C.4, “February 2017 (Maintenance Release SUSE OpenStack Cloud 6)”
- Section C.5, “March, 2016 (Initial Release SUSE OpenStack Cloud 6)”
- Section C.6, “February, 2015 (Initial Release SUSE Cloud 5)”
- Section C.7, “August, 2014 (Initial Release SUSE Cloud 4)”
- Section C.8, “April 21, 2014 (Maintenance Release SUSE Cloud 3)”
- Section C.9, “February 17, 2014 (Initial Release SUSE Cloud 3)”
- Section C.10, “September 25, 2013 (Maintenance Release SUSE Cloud 2.0)”
- Section C.11, “September 11, 2013 (Initial Release SUSE Cloud 2.0)”

C.1  July 2017 (Maintenance Release SUSE OpenStack Cloud 7)

General Changes to this Guide

- Added Section 11.21, “Deploying Monasca”.
- Added new manuals on SUSE OpenStack Cloud Monitoring (Monasca) to the list of available documentation in the introduction (https://bugzilla.suse.com/show_bug.cgi?id=1042350).
- Added documentation for SUSE OpenStack Cloud Monitoring (Monasca) to various chapters in this guide.
• Updated "Important: VLAN Settings" info boxes to correct conflicting information (https://bugzilla.suse.com/show_bug.cgi?id=1039926).

• Corrected several instances of `teaming` to `team` (https://bugzilla.suse.com/show_bug.cgi?id=1038741).

• Moved the "Recovering Clusters to a Healthy State" appendix to Section 15.5, “Recovering Clusters to a Healthy State” (https://bugzilla.suse.com/show_bug.cgi?id=1027633).

Chapter 7, Crowbar Setup


• Changed `my_mode`, which is not a valid network mode, to valid network modes in the `network.json` configuration examples (https://bugzilla.suse.com/show_bug.cgi?id=1032689).

• Added more supported network interface speeds to Section 7.5.5, “Network Conduits” (https://bugzilla.suse.com/show_bug.cgi?id=1040259).

• Corrected section on creating multiple external networks Section 7.6, “Setting Up Multiple External Networks” (https://bugzilla.suse.com/show_bug.cgi?id=1040318).

Chapter 11, Deploying the OpenStack Services

• Added section on configuring SSL for RabbitMQ Section 11.3.2, “SSL Configuration for RabbitMQ” (https://bugzilla.suse.com/show_bug.cgi?id=1033135).


• Corrected section on Cinder NFS backend mount options Section 11.8, “Deploying Cinder” (https://bugzilla.suse.com/show_bug.cgi?id=1043385).


Section 15.3, “Upgrading from SUSE OpenStack Cloud 6 to SUSE OpenStack Cloud 7”


C.2 April 2017 (Maintenance Release SUSE OpenStack Cloud 7)

General Changes to this Guide

- Added Chapter 14, Deploying the Non-OpenStack Components.

- Reorganized the structure of the guide by integrating most of the appendices into the main parts of the guide.
Chapter 7, Crowbar Setup

- Made corrections to the definition and examples in Example 7.4, “Network Modes for Certain Machines”. (https://bugzilla.suse.com/show_bug.cgi?id=1032143)

Chapter 11, Deploying the OpenStack Services


- The cinder-volume role can now also be deployed to a cluster. Added a note to Section 11.8.1, “HA Setup for Cinder” on how to re-deploy this role from a single machine to a cluster environment (http://bugzilla.suse.com/show_bug.cgi?id=1019226).

- The ec2-api role can now also be deployed to a cluster. Added information about the deployment of ec2-api and nova-controller to Section 11.10.1, “HA Setup for Nova”.


Chapter 15, SUSE OpenStack Cloud Maintenance

- Rewrote Section 15.3, “Upgrading from SUSE OpenStack Cloud 6 to SUSE OpenStack Cloud 7” to reflect the new upgrade procedure.

- Ceph needs to be upgraded separately (https://bugzilla.suse.com/show_bug.cgi?id=1014164).
C.3 February 2017 (Initial Release SUSE OpenStack Cloud 7)

General Changes to this Guide

- Added an explanatory note for the SSL CA Certificates File field (https://bugzilla.suse.com/show_bug.cgi?id=1015139).

- All nodes including the Administration Server are now based on SUSE Linux Enterprise Server 12 SP2. Block Storage now supports SUSE Enterprise Storage 4. The documentation has been updated accordingly.

- Removed all references to Nova-docker and Hyper-V (https://bugzilla.suse.com/show_bug.cgi?id=1016296).

- Numerous small fixes and additions to the documentation, based on technical feedback.

- All screenshots have been updated to reflect UI changes.

- The e-mail address for documentation feedback has changed to doc-team@suse.com.
Chapter 2, Considerations and Requirements

- Adjusted the RAM requirements for all nodes managed by Crowbar (https://bugzilla.suse.com/show_bug.cgi?id=971597).

Chapter 7, Crowbar Setup

- The SUSE OpenStack Cloud Crowbar installation can only be started via the Web interface—using install-suse-cloud is deprecated (https://bugzilla.suse.com/show_bug.cgi?id=1009320).

Chapter 9, The Crowbar Web Interface


Chapter 11, Deploying the OpenStack Services

- Added more information to Section 11.5, “Deploying Ceph (optional)” about the ceph-mds role (https://bugzilla.suse.com/show_bug.cgi?id=1005099).
- Added Note: Custom Vendor Data for Instances to Section 11.10, “Deploying Nova” (https://bugzilla.suse.com/show_bug.cgi?id=988351).
Chapter 17, Troubleshooting and Support

- **Added** Q: How to change the Keystone credentials after the Keystone barclamp has been deployed? (https://bugzilla.suse.com/show_bug.cgi?id=992076).

Appendices

- **Added** Chapter 13, Configuration Files for OpenStack Services (https://bugzilla.suse.com/show_bug.cgi?id=1016425).

C.4 February 2017 (Maintenance Release SUSE OpenStack Cloud 6)

General Changes to this Guide

- **Moved** Section 9.3, “Deploying Barclamp Proposals” from Chapter 11, Deploying the OpenStack Services to Chapter 9, The Crowbar Web Interface. Restructured the section.

Chapter 2, Considerations and Requirements

- A virtualized Administration Server is supported (https://bugzilla.suse.com/show_bug.cgi?id=979851).


- In Section 2.1, “Network”, added Table 2.1, “Minimum Number of IP Addresses for Network Ranges” (https://bugzilla.suse.com/show_bug.cgi?id=972237).

- In Section 2.5, “Software Requirements”, updated information on licenses and subscriptions (https://bugzilla.suse.com/show_bug.cgi?id=1018971).
Chapter 4, Installing and Setting Up an SMT Server on the Administration Server (Optional)

- Added note to clarify the use of an SMT server on the Administration Server (https://bugzilla.suse.com/show_bug.cgi?id=1013625).
- In Section 2.4.4, “Storage Node”, added more specific hardware requirements in case Ceph is used as storage.

Chapter 7, Crowbar Setup


Chapter 10, Installing the OpenStack Nodes

- Updated Section 10.4.2, “Configuring Node Updates with the SUSE Manager Client Barclamp” (https://bugzilla.suse.com/show_bug.cgi?id=987021).
- Corrected the command for reinstalling the SUSE Manager barclamp in Section 10.4.2, “Configuring Node Updates with the SUSE Manager Client Barclamp” (https://bugzilla.suse.com/show_bug.cgi?id=977539).

Chapter 11, Deploying the OpenStack Services

- In Section 11.1, “Deploying Pacemaker (Optional, HA Setup Only)”, added how to find and specify the watchdog kernel module. It is needed for using SBD as a fencing mechanism for shared storage (https://bugzilla.suse.com/show_bug.cgi?id=971787).
- The Keystone algorithm default changed from PKI to UUID for security reasons. The changes have been applied to Section 11.4, “Deploying Keystone” (https://bugzilla.suse.com/show_bug.cgi?id=973750).
• In Section 11.5, “Deploying Ceph (optional)," recommended dedicated nodes for each Ceph component and allowed for self-signed SSL certificates for RADOS Gateway.


• In Section 11.11, “Deploying Horizon (OpenStack Dashboard)," added a note on how to set large Horizon timeouts to (https://bugzilla.suse.com/show_bug.cgi?id=941537).


• Added Section 11.19, “Deploying Barbican (Optional)” (https://bugzilla.suse.com/show_bug.cgi?id=1011674).

Chapter 15, SUSE OpenStack Cloud Maintenance

• In Section 15.2, “Service Order on SUSE OpenStack Cloud Start-up or Shutdown", added in which order to start and stop storage-related nodes and services (https://bugzilla.suse.com/show_bug.cgi?id=1002833).

• Added an explanation for the blue dot status indicator (state upgrade) to Section 15.3, “Upgrading from SUSE OpenStack Cloud 6 to SUSE OpenStack Cloud 7” (https://bugzilla.suse.com/show_bug.cgi?id=971920).

• In Section 15.3.1, “Requirements", added another requirement for the upgrade process (https://bugzilla.suse.com/show_bug.cgi?id=982561).

Appendices

• Fixed syntax of /etc/crowbar/network.json examples in Section 7.5, “Custom Network Configuration” and added the TX/RX offloading options (https://bugzilla.suse.com/show_bug.cgi?id=1021352).

• Correction for Section 7.5.5, “Network Conduits": Bonding supports more than two interfaces (https://bugzilla.suse.com/show_bug.cgi?id=1003614).
Rewrote the interface identifier part in Section 7.5.5, “Network Conduits” for more clarity (https://bugzilla.suse.com/show_bug.cgi?id=993518).

Corrected the clean-up command in Section 15.5, “Recovering Clusters to a Healthy State” (https://bugzilla.suse.com/show_bug.cgi?id=975005).

Added Chapter 18, Building a SUSE OpenStack Cloud Test lab (https://bugzilla.suse.com/show_bug.cgi?id=991741).

Bugfixes


C.5 March, 2016 (Initial Release SUSE OpenStack Cloud 6)

General

- Renamed SUSE Cloud to SUSE OpenStack Cloud.

- Reorganized the manual by introducing parts and splitting long chapters to improve readability.

- All nodes including the Administration Server are now based on SUSE Linux Enterprise Server 12 SP2. The documentation has been updated accordingly.

- Rewrote large parts of Chapter 5, Software Repository Setup because repository handling in SUSE OpenStack Cloud has been made easier. Furthermore, repositories are no longer provided by the Novell Customer Center, but rather by the SUSE Customer Center.

- Added Chapter 9, The Crowbar Web Interface.
• Added documentation for the new Web interface-based installation of the Administration Server.

• A new backup procedure has been added to SUSE OpenStack Cloud (Section 15.7, “Backing Up and Restoring the Administration Server”).

• Section 15.3, “Upgrading from SUSE OpenStack Cloud 6 to SUSE OpenStack Cloud 7” is now done via a Web interface.

• Added Section 15.2, “Service Order on SUSE OpenStack Cloud Start-up or Shutdown”.

• Added 'Recovering Clusters to a Healthy State' appendix. (Moved to Maintenance chapter 2017-05-24)

• SUSE OpenStack Cloud 6 supports Manila a Shared File System Service (Section 11.15, “Deploying Manila”).

• Added Chapter 12, Limiting Users’ Access Rights

**Bugfixes**


• Provided a full list of OpenStack roles and services in Section 11.24, “Roles and Services in SUSE OpenStack Cloud” (http://bugzilla.suse.com/show_bug.cgi?id=875149).

• SUSE OpenStack Cloud does not support High Availability for the LBaaS service plugin (http://bugzilla.suse.com/show_bug.cgi?id=881510).

• Provided instructions on how to change keymap on Compute Nodes (http://bugzilla.suse.com/show_bug.cgi?id=906846).

• Added a link to the SUSE Enterprise Storage documentation to Section 2.6.4.2, “Ceph —Avoiding Points of Failure” (http://bugzilla.suse.com/show_bug.cgi?id=917344).

• An HA setup for Trove is not supported (http://bugzilla.suse.com/show_bug.cgi?id=919471).

• Added the new section Section 15.2, “Service Order on SUSE OpenStack Cloud Start-up or Shutdown”. (http://bugzilla.suse.com/show_bug.cgi?id=919476).
Repositories are distributed by the SUSE Customer Center (http://bugzilla.suse.com/show_bug.cgi?id=919844).


Added documentation for VXLAN support at Section 11.9, “Deploying Neutron” (http://bugzilla.suse.com/show_bug.cgi?id=923218).

HA cluster nodes need to be put into maintenance mode prior to updating packages (http://bugzilla.suse.com/show_bug.cgi?id=923962).

Added an explanation on Distributed Virtual Routers (DVR) to Section 11.9, “Deploying Neutron” (http://bugzilla.suse.com/show_bug.cgi?id=925438).


Added instructions on how to enable jumbo frames at Section 7.5, “Custom Network Configuration” (http://bugzilla.suse.com/show_bug.cgi?id=930744).

Added the new appendix Chapter 12, Limiting Users’ Access Rights (http://bugzilla.suse.com/show_bug.cgi?id=931856).

Ceilometer is also supported on HyperV Compute Nodes (http://bugzilla.suse.com/show_bug.cgi?id=932314).

Added instructions on how to install additional packages to Q & A 17.1.1, “Admin Node Deployment” (http://bugzilla.suse.com/show_bug.cgi?id=936244).

Public and floating networks can be split using different VLANs (http://bugzilla.suse.com/show_bug.cgi?id=936984).

Calamari needs to be deployed on a dedicated node (http://bugzilla.suse.com/show_bug.cgi?id=940189).

Setting REPOS_SKIP_CHECKS is no longer needed on SUSE OpenStack Cloud 6 (http://bugzilla.suse.com/show_bug.cgi?id=940941).
- Provided better examples for `/etc/crowbar/network.json` in Section 7.5, “Custom Network Configuration” (http://bugzilla.suse.com/show_bug.cgi?id=944074).


- The openvswitch with VLAN configuration for neutron-l3 no longer requires a 4 NIC configuration (http://bugzilla.suse.com/show_bug.cgi?id=946874).

- The Web interface now contains a Repositories screen showing an overview of the repositories of SUSE OpenStack Cloud (http://bugzilla.suse.com/show_bug.cgi?id=952643).

- Added documentation for the Cisco USC support at Section 9.2.3, “Utilities” (http://bugzilla.suse.com/show_bug.cgi?id=953982).

- Added the FAQ Q: (http://bugzilla.suse.com/show_bug.cgi?id=954413).


- Errors in Section 9.3.3, “Deleting a Proposal That Already Has Been Deployed” have been fixed (http://bugzilla.suse.com/show_bug.cgi?id=956244).

- Renamed SUSE Cloud to SUSE OpenStack Cloud (http://bugzilla.suse.com/show_bug.cgi?id=956431).

- Updates for the Swift barclamp (http://bugzilla.suse.com/show_bug.cgi?id=956659).

- Updates for the Glance barclamp (http://bugzilla.suse.com/show_bug.cgi?id=956664).

- Updates for the Cinder barclamp (http://bugzilla.suse.com/show_bug.cgi?id=956666).

- Updates for the Neutron barclamp (http://bugzilla.suse.com/show_bug.cgi?id=956669).

- Updates for the Nova barclamp (http://bugzilla.suse.com/show_bug.cgi?id=956900).

- OpenAIS has been replaced by Corosync (http://bugzilla.suse.com/show_bug.cgi?id=956670).

- Updates for the list of services at Section 2.3, “SSL Encryption” (http://bugzilla.suse.com/show_bug.cgi?id=956675).
• Updates for the Ceilometer barclamp (http://bugzilla.suse.com/show_bug.cgi?id=956676).

• Updates for Section 2.5, “Software Requirements” (http://bugzilla.suse.com/show_bug.cgi?id=956679).

• Updated Chapter 4, Installing and Setting Up an SMT Server on the Administration Server (Optional) (http://bugzilla.suse.com/show_bug.cgi?id=956680).

• Minor changes in Section 17.1, “FAQ” (http://bugzilla.suse.com/show_bug.cgi?id=956682).

• Services on SUSE Linux Enterprise Server 12 SP2 are started via the systemctl command (http://bugzilla.suse.com/show_bug.cgi?id=956683).


• Added documentation for the new Web interface-based installation of the Administration Server (http://bugzilla.suse.com/show_bug.cgi?id=956689).

• Document the possibility to set the node file system at Section 10.2, “Node Installation” (http://bugzilla.suse.com/show_bug.cgi?id=956874).

• Horizon SSL options do not match (http://bugzilla.suse.com/show_bug.cgi?id=959335).

• The new backup procedure has been documented at Section 15.7, “Backing Up and Restoring the Administration Server” (http://bugzilla.suse.com/show_bug.cgi?id=962576).

• Added documentation about deploying HA for Compute Nodes (http://bugzilla.suse.com/show_bug.cgi?id=964205).

• Apache needs to be restarted before starting the installation from the Web interface (http://bugzilla.suse.com/show_bug.cgi?id=966158).


• Added Section 15.5.6, “Recovering From an Unresolvable DRBD Split Brain Situation” (http://bugzilla.suse.com/show_bug.cgi?id=970244).
- Provided additional information on bonding modes at Section 7.3, “Network Mode” (Doc Comment 29562).

- An HA setup of Ceilometer needs to be installed on a cluster with an odd number of nodes (Doc Comment 26861).

C.6  February, 2015 (Initial Release SUSE Cloud 5)

Chapter 2, Considerations and Requirements

- Completely rewrote Section 2.5, “Software Requirements”. Added information about subscriptions, optional features, media layout and repositories.

Chapter 3, Installing the Administration Server

- Split the chapter into two separate parts.

- Transferred the optional SMT installation to the appendix (Chapter 4, Installing and Setting Up an SMT Server on the Administration Server (Optional)) to improve the readability.

Chapter 4, Admin Node Configuration

- Added information about SLES 12 and SUSE Enterprise Storage repositories and adjusted the repository paths to the new structure.

- Removed information about linking to local SMT repositories—this is now done automatically by the installation script.

- Completely rewrote Chapter 5, Software Repository Setup to make it easier to read.

Chapter 11, Deploying the OpenStack Services

- Updated screenshots where necessary.

- Updated Section 11.5, “Deploying Ceph (optional)” because of new configuration options, roles and the fact that Ceph needs SLES 12 nodes.

- Updated Section 11.8, “Deploying Cinder” by adding instructions on how to deploy multiple back-ends. Also added descriptions for additional back-ends Fujitsu ETERNUS DX and VMware.
- Updated Section 11.9, “Deploying Neutron” because of changes in the barclamp.
- Added Section 11.16, “Deploying Trove (Optional)

Chapter 17, Troubleshooting and Support

- Added Q & A 17.1.3, “Miscellaneous”.
- Added How to change the default keymap for instances?

Appendices

- Added VMware Compute Node system requirements to Section A.1, “Requirements”.
- Added Section A.4, “Making the Nova Compute VMware Node Highly Available”.
- Added Section 7.7, “Crowbar Batch Command”.

Bugfixes

- Added a warning about old database files on shared storage to Section 11.2.1, “HA Setup for the Database” (https://bugzilla.suse.com/show_bug.cgi?id=875696).
- Added information about log files written during the upgrade procedure to Section 15.3, “Upgrading from SUSE OpenStack Cloud 6 to SUSE OpenStack Cloud 7” and Chapter 16, Log Files (https://bugzilla.suse.com/show_bug.cgi?id=892497).
- Fixed wrong group names and file names in Section 10.4.4, “Using an Externally Managed Ceph Cluster” (http://bugzilla.suse.com/show_bug.cgi?id=894231).
- Updated Section 11.8, “Deploying Cinder” by adding instructions on how to deploy multiple back-ends. Also added descriptions for additional back-ends Fujitsu EXTERNUS DX and VMware (https://bugzilla.suse.com/show_bug.cgi?id=889729).
- Added a pointer to man mount(8) to Section 11.2.1, “HA Setup for the Database” (https://bugzilla.suse.com/show_bug.cgi?id=898538/).
• Documented the Region Name at Section 11.4, “Deploying Keystone” (https://bugzilla.suse.com/show_bug.cgi?id=900090).

• Added VMware Compute Node system requirements to Section A.1, “Requirements” (https://bugzilla.suse.com/show_bug.cgi?id=903676).

• crowbar-backup (Section 15.7, “Backing Up and Restoring the Administration Server”) is now officially supported by SUSE (http://bugzilla.suse.com/show_bug.cgi?id=904374).

• The YaST Crowbar module now supports adding custom repositories, which no longer makes it necessary to manually edit /etc/crowbar/provisioner.js (https://bugzilla.suse.com/show_bug.cgi?id=906267).

• Added How to change the default keymap for instances? (https://bugzilla.suse.com/show_bug.cgi?id=906846).

• Corrected the number of nodes required for deploying Ceph-mon (https://bugzilla.suse.com/show_bug.cgi?id=907329).

• Added installation details for an HA database setup using a shared NFS directory to Section 11.2.1, “HA Setup for the Database” (http://bugzilla.suse.com/show_bug.cgi?id=910061).

• Added a link to the CinderSupportMatrix in Section 2.2.1, “Cloud Storage Services” (http://bugzilla.suse.com/show_bug.cgi?id=910843).

• Added Q & A 17.1.3, “Miscellaneous” (http://bugzilla.suse.com/show_bug.cgi?id=911336).


• Updated Chapter 16, Log Files (https://bugzilla.suse.com/show_bug.cgi?id=912699).

• Documented changes in Section 11.8, “Deploying Cinder” regarding the NetApp back-end (https://bugzilla.suse.com/show_bug.cgi?id=914711).

• Added Section A.4, “Making the Nova Compute VMware Node Highly Available” (https://bugzilla.suse.com/show_bug.cgi?id=914730).

• Added Section 7.7, “Crowbar Batch Command” (https://bugzilla.suse.com/show_bug.cgi?id=915697).
- Updated Section 11.9, “Deploying Neutron” because of changes in the barclamp (https://bugzilla.suse.com/show_bug.cgi?id=916036).


- Added a warning about not to set up shared storage in a productive SUSE OpenStack Cloud (https://bugzilla.suse.com/show_bug.cgi?id=917334).

C.7 August, 2014 (Initial Release SUSE Cloud 4)

Admin Node Installation

- Added the section Section 7.5.8, “Providing Access to External Networks” (http://bugzilla.suse.com/show_bug.cgi?id=882795).

Node OpenStack Service Deployment

- Updated the barclamp descriptions where necessary.

- Updated screenshots where necessary.

- Added the section Section 9.3.4, “Queuing/Dequeuing Proposals” (http://bugzilla.suse.com/show_bug.cgi?id=882825).

Bugfixes

- Added an explanation for the new option Policy when cluster does not have quorum to Section 11.1, “Deploying Pacemaker (Optional, HA Setup Only)” (http://bugzilla.suse.com/show_bug.cgi?id=875776).

- Added a list of Neutron plugins which can be used with VMware (http://bugzilla.suse.com/show_bug.cgi?id=880128).
• Added the section *Section 7.5.8, “Providing Access to External Networks”* ([http://bugzilla.suse.com/show_bug.cgi?id=882795](http://bugzilla.suse.com/show_bug.cgi?id=882795)).

• Added an annotation to *Section 5.1, “Copying the Product Media Repositories”* explaining why not to use symbolic links for the SUSE Linux Enterprise Server product repository ([http://bugzilla.suse.com/show_bug.cgi?id=886196](http://bugzilla.suse.com/show_bug.cgi?id=886196)).

• Added an explanation explaining the need to use a sub-domain in *Section 2.1.4, “DNS and Host Names”* ([http://bugzilla.suse.com/show_bug.cgi?id=886563](http://bugzilla.suse.com/show_bug.cgi?id=886563)).

• Added the section *Section 9.3.4, “Queuing/Dequeuing Proposals”* ([http://bugzilla.suse.com/show_bug.cgi?id=882825](http://bugzilla.suse.com/show_bug.cgi?id=882825)).

• Cleaned up network ranges in *Section 2.1.1, “Network Address Allocation”* ([http://bugzilla.suse.com/show_bug.cgi?id=885807](http://bugzilla.suse.com/show_bug.cgi?id=885807)).

• Corrected annotation on VLAN settings ([http://bugzilla.suse.com/show_bug.cgi?id=885814](http://bugzilla.suse.com/show_bug.cgi?id=885814)).

• Fixed an error about using openvswitch with Windows server integration in *Section 11.9, “Deploying Neutron”* ([http://bugzilla.suse.com/show_bug.cgi?id=889602](http://bugzilla.suse.com/show_bug.cgi?id=889602)).

• Updated the upgrade procedure in *Section 15.3, “Upgrading from SUSE OpenStack Cloud 6 to SUSE OpenStack Cloud 7”* ([http://bugzilla.suse.com/show_bug.cgi?id=889663](http://bugzilla.suse.com/show_bug.cgi?id=889663)).

### C.8 April 21, 2014 (Maintenance Release SUSE Cloud 3)

Included information on how to make SUSE Cloud highly available.

The following new sections have been added:

• *Section 1.6, “HA Setup”*.

• *Section 2.6, “High Availability”*.

• *Section 11.1, “Deploying Pacemaker (Optional, HA Setup Only)”*

• *Section 15.4, “Upgrading to an HA Setup”*

• *Section 15.7, “Backing Up and Restoring the Administration Server”*

• *Section 11.24, “Roles and Services in SUSE OpenStack Cloud”*
Various smaller additions and changes throughout the document. New terms have been added to *Glossary of Terminology and Product Names*.

**February 17, 2014 (Initial Release SUSE Cloud 3)**

**Admin Node Installation**

- Re-wrote *Chapter 7, Crowbar Setup* because YaST now supports Crowbar user management, setting up a bastion network and configuring external repository URLs.

**Node Installation**

- Added the section *Section 10.4.4, “Using an Externally Managed Ceph Cluster”*. 

- Added the section *Section 10.3, “Converting Existing SUSE Linux Enterprise Server 12 SP2 Machines Into SUSE OpenStack Cloud Nodes”*. 

- Added the FAQ *How to change the default disk used for operating system installation?* to *Section 17.1, “FAQ”*. 

**OpenStack Service Deployment**

- Updated *Appendix A, VMware vSphere Installation Instructions*. 

- Lots of minor changes in *Chapter 11, Deploying the OpenStack Services* because of changes in the Web interface. 

- Added *Section 11.12, “Deploying Heat (Optional)”*. 

- Added *Section 11.13, “Deploying Ceilometer (Optional)”*. 

- Added instructions on how to use the Cisco Nexus plugin with Neutron (*Appendix B, Using Cisco Nexus Switches with Neutron*). 

- Added instructions on how to configure NetApp for Cinder to *Section 11.8, “Deploying Cinder”*. 

- Updated all screenshots because of an updated Web interface theme.
Maintenance

- Added the section Section 15.3, “Upgrading from SUSE OpenStack Cloud 6 to SUSE OpenStack Cloud 7”.

General

- Added Chapter 15, SUSE OpenStack Cloud Maintenance.
- Added definition of user roles to About This Guide.

Bugfixes

- Added instruction on adjusting the CD-ROM drive letter for deploying Windows Compute Nodes when the Administration Server has got multiple hard disks to Providing a Hyper-V Netboot Environment (http://bugzilla.suse.com/show_bug.cgi?id=863978).
- Adjusted the memory recommendations for the Control Node(s) at Section 2.4.2, “Control Node” (http://bugzilla.suse.com/show_bug.cgi?id=862312).
- Add bind mount instructions for the Hyper-V Server deployment to Providing a Hyper-V Netboot Environment (http://bugzilla.suse.com/show_bug.cgi?id=861462).
- Updated Appendix A, VMware vSphere Installation Instructions (http://bugzilla.suse.com/show_bug.cgi?id=859173).
- Added Section 17.2.1, “Applying PTFs (Program Temporary Fixes) Provided by the SUSE L3 Support” (http://bugzilla.suse.com/show_bug.cgi?id=855387).
- Added instructions on how to disable route verification to Section 17.1, “FAQ” (http://bugzilla.suse.com/show_bug.cgi?id=841214).
C.10 September 25, 2013 (Maintenance Release SUSE Cloud 2.0)

OpenStack Service Deployment

- Added instructions on how to set up support for Microsoft Hyper-V (Setting up a Netboot Environment for Microsoft* Windows).

- Screenshots for node allocation and for all barclamps have been added to Chapter 10, Installing the OpenStack Nodes and Chapter 11, Deploying the OpenStack Services.

Bugfixes

- Added the FAQ What to do when install-suse-cloud fails on deploying the IPMI/BMC network? to Section 17.1, “FAQ” (http://bugzilla.suse.com/show_bug.cgi?id=782337 ↩).

- Completely restructured the FAQ section in Chapter 17, Troubleshooting and Support (http://bugzilla.suse.com/show_bug.cgi?id=794534 ↩).

- Added a note about VLANs on the admin network to Section 2.1, “Network” (http://bugzilla.suse.com/show_bug.cgi?id=835065 ↩).

C.11 September 11, 2013 (Initial Release SUSE Cloud 2.0)

Admin Node Installation

- Re-wrote Setting Up a Bastion Network.

- Completely re-wrote the repositories chapter. It now also contains information on how to use an external SMT or SUSE Manager server.

- Renamed the commands `smt repos` and `smt mirror` to `smt-repos` and `smt-mmirror` because of a conflict with the `smt` command from the star package (Chapter 4, Installing and Setting Up an SMT Server on the Administration Server (Optional)).
Networking

- Added a section on how to adjust the SUSE OpenStack Cloud network settings (Section 7.5, “Custom Network Configuration”).
- Added a snippet on the os_sdn network, that was introduced in SUSE Cloud 2.0 (Section 2.1, “Network”).

Node Installation

- Added Section 10.4.3, “Mounting NFS Shares on a Node”.
- Added Section 10.4.2, “Configuring Node Updates with the SUSE Manager Client Barclamp”.
- Added Section 10.4.1, “Deploying Node Updates with the Updater Barclamp”.
- Re-wrote Section 10.4.6, “Enabling SSL”.
- Added information on the new Public Name and Target Platform attributes on the Node Dashboard to Section 10.2, “Node Installation”.

OpenStack Service Deployment

- Added instructions on how to deploy Neutron (Section 11.9, “Deploying Neutron”).
- Added instructions on how to set up support for VMware ESX (Appendix A, VMware vSphere Installation Instructions).
- Added instructions on how to deploy Cinder in Section 11.8, “Deploying Cinder”.
- barclamp descriptions have been updated—almost all configurable attributes are now described in Chapter 11, Deploying the OpenStack Services.

Bugfixes

- Added a note on debugging and adding additional repositories the update repositories chapter (http://bugzilla.suse.com/show_bug.cgi?id=838096).
- Fixed an error in Section 2.1.2.2, “Dual Network Mode” that claimed two NICs are required on the Administration Server (http://bugzilla.suse.com/show_bug.cgi?id=838412).
- Clarified in Section 11.8, “Deploying Cinder” that cinder-volume can be deployed on several block storage nodes (http://bugzilla.suse.com/show_bug.cgi?id=835921).
• Added the role name for the Administration Server to Example 7.3, “Network Modes for Certain Roles” (http://bugzilla.suse.com/show_bug.cgi?id=838354).

• Added information on how to access nodes from the outside by using the Administration Server as a jump host via the bastion network in Section 2.1.3, “Accessing the Administration Server via a Bastion Network” (http://bugzilla.suse.com/show_bug.cgi?id=838341).

• Added a short description on how to change the host name during the installation in the section Chapter 6, Service Configuration: Administration Server Network Configuration (http://bugzilla.suse.com/show_bug.cgi?id=826163).

• Dropped snippets about how to activate the bastion network (http://bugzilla.suse.com/show_bug.cgi?id=832952).

• Fixed a syntax error in a program listing at Chapter 4, Installing and Setting Up an SMT Server on the Administration Server (Optional) (http://bugzilla.suse.com/show_bug.cgi?id=826833).

• Added the FAQ I have installed a new hard disk on a node that was already deployed. Why is it ignored by Crowbar? to Section 17.1, “FAQ” (http://bugzilla.suse.com/show_bug.cgi?id=779733).

• Added the FAQ What to do if a node hangs during hardware discovery after the very first boot using PXE into the SLEShammer image? to Section 17.1, “FAQ” (http://bugzilla.suse.com/show_bug.cgi?id=788156).

• Corrected the IP address in Chapter 6, Service Configuration: Administration Server Network Configuration (http://bugzilla.suse.com/show_bug.cgi?id=817957).

• Made various improvements throughout the document (http://bugzilla.suse.com/show_bug.cgi?id=806698).
Glossary of Terminology and Product Names

Active/Active
A concept of how services are running on nodes in a High Availability cluster. In an active/active setup, both the main and redundant systems are managed concurrently. If a failure of services occurs, the redundant system is already online, and can take over until the main system is fixed and brought back online.

Active/Passive
A concept of how services are running on nodes in a High Availability cluster. In an active/passive setup, one or more services are running on an active cluster node, whereas the passive node stands by. Only in case of the active node failing, the services are transferred to the passive node.

Administration Server
Also called Crowbar Administration Node. Manages all other nodes. It assigns IP addresses to them, boots them using PXE, configures them, and provides them the necessary software for their roles. To provide these services, the Administration Server runs Crowbar, Chef, DHCP, TFTP, NTP, and other services.

AMI (Amazon Machine Image)
A virtual machine that can be created and customized by a user. AMIs can be identified by an ID prefixed with ami-.

Availability Zone
An OpenStack method of partitioning clouds. It enables you to arrange OpenStack Compute hosts into logical groups. The groups typically have physical isolation and redundancy from other availability zones, for example, by using separate power supply or network equipment for each zone. When users provision resources, they can specify from which availability zone their instance should be created. This allows cloud consumers to ensure that their application resources are spread across disparate machines to achieve high availability if the hardware fails. Since the Grizzly release, availability zones are implemented via host aggregates.

AWS (Amazon Web Services)
A collection of remote computing services (including Amazon EC2, Amazon S3, and others) that together make up Amazon's cloud computing platform.
Barclamp
A set of Chef cookbooks, templates, and other logic. Used to apply a particular Chef role to individual nodes or a set of nodes.

Ceilometer
Code name for Telemetry.

Cell
Cells provide a new way to scale Compute deployments. This includes the ability to have compute clusters (cells) in different geographic locations all under the same Compute API. This allows for a single API server being used to control access to multiple cloud installations. Cells provide logical partitioning of Compute resources in a child/parent relationship.

Ceph
A massively scalable, open source, distributed storage system. It consists of an object store, a block store, and a POSIX-compliant distributed file system.

Chef
An automated configuration management platform for deployment of your entire cloud infrastructure. The Chef server manages many of the software packages and allows the easy changing of nodes.

Cinder
Code name for OpenStack Block Storage.

cloud-init
A package commonly installed in virtual machine images. It uses the SSH public key to initialize an instance after boot.

Cluster
A set of connected computers that work together. In many respects (and from the outside) they can be viewed as a single system. Clusters can be further categorized depending on their purpose, for example: High Availability clusters, high-performance clusters, or load-balancing clusters.

Cluster Partition
Whenever communication fails between one or more nodes and the rest of the cluster, a cluster partition occurs: The nodes of a cluster are split into partitions but still active. They can only communicate with nodes in the same partition and are unaware of the separated
nodes. As the loss of the nodes on the other partition cannot be confirmed, a *Split Brain* scenario develops.

**Cluster Resource Manager**

The main management entity in a High Availability cluster responsible for coordinating all non-local interactions. The *SUSE Linux Enterprise High Availability Extension* uses Pacemaker as CRM. Each node of the cluster has its own CRM instance. The one running on the *Designated Coordinator (DC)* is the one elected to relay decisions to the other non-local CRMs and to process their input.

**Compute Node**

Node within a SUSE OpenStack Cloud. A physical server running a Hypervisor. A Compute Node is a host for guest virtual machines that are deployed in the cloud. It starts virtual machines on demand using `nova-compute`. To split virtual machine load across more than one server, a cloud should contain multiple Compute Nodes.

**Container**

A container is a storage compartment for data. It can be thought of as a directory, only that it cannot be nested.

**Control Node**

Node within a SUSE OpenStack Cloud. The Control Node is configured through the Administration Server and registers with the Administration Server for all required software. Hosts the OpenStack API endpoints and the OpenStack scheduler and runs the `nova` services—except for `nova-compute`, which is run on the Compute Nodes. The Control Node coordinates everything about cloud virtual machines: like a central communication center it receives all requests (for example, if a user wants to start or stop a virtual machine). It communicates with the Compute Nodes to coordinate fulfillment of the request. A cloud can contain multiple Control Nodes.

**Cookbook**

A collection of Chef recipes which deploy a software stack or functionality. The unit of distribution for Chef.

**Corosync**

The messaging/infrastructure layer used in a High Availability cluster that is set up with SUSE Linux Enterprise High Availability Extension. For example, the cluster communication channels are defined in `/etc/corosync/corosync.conf`. 
Crowbar

Bare-metal installer and an extension of Chef server. The primary function of Crowbar is to get new hardware into a state where it can be managed by Chef. That means: Setting up BIOS and RAID, network, installing a basic operating system, and setting up services like DNS, NTP, and DHCP. The Crowbar server manages all nodes, supplying configuration of hardware and software.

Designated Coordinator (DC)

One Cluster Resource Manager in a High Availability cluster is elected as the Designated Coordinator (DC). The DC is the only entity in the cluster that can decide that a cluster-wide change needs to be performed. For example, fencing a node or moving resources around. After a membership change, the DC is elected from all nodes in the cluster.

DRBD (Distributed Replicated Block Device)

DRBD* is a block device designed for building high availability clusters. The whole block device is mirrored via a dedicated network and is seen as a network RAID-1.

EBS (Amazon Elastic Block Store)

Block-level storage volumes for use with Amazon EC2 instances. Similar to OpenStack Cinder.

EC2 (Amazon Elastic Compute Cloud)

A public cloud run by Amazon. It provides similar functionality to OpenStack Compute.

Ephemeral Disk

Ephemeral disks offer machine local disk storage linked to the life cycle of a virtual machine instance. When a virtual machine is terminated, all data on the ephemeral disk is lost. Ephemeral disks are not included in any snapshots.

Failover

Occurs when a resource fails on a cluster node (or the node itself fails) and the affected resources are started on another node.

Fencing

Describes the concept of preventing access to a shared resource by isolated or failing cluster members. Should a cluster node fail, it will be shut down or reset to prevent it from causing trouble. The resources running on the cluster node will be moved away to another node. This way, resources are locked out of a node whose status is uncertain.
Fixed IP Address
When an instance is launched, it is automatically assigned a fixed (private) IP address, which stays the same until the instance is explicitly terminated. Private IP addresses are used for communication between instances.

Flavor
The compute, memory, and storage capacity of nova computing instances (in terms of virtual CPUs, RAM, etc.). Flavors can be thought of as “templates” for the amount of cloud resources that are assigned to an instance.

Floating IP Address
An IP address that a Compute project can associate with a virtual machine. A pool of floating IPs is available in OpenStack Compute, as configured by the cloud operator. After a floating IP address has been assigned to an instance, the instance can be reached from outside the cloud by this public IP address. Floating IP addresses can be dynamically disassociated and associated with other instances.

Glance
Code name for OpenStack Image.

Guest Operating System
An instance of an operating system installed on a virtual machine.

Heat
Code name for Orchestration.

High Availability Cluster
High Availability clusters seek to minimize two things: system downtime and data loss. System downtime occurs when a user-facing service is unavailable beyond a specified maximum amount of time. System downtime and data loss (data is accidentally destroyed) can occur not only in case of a single failure. There are also cases of cascading failures, where a single failure deteriorates into a series of consequential failures.

Horizon
Code name for OpenStack Dashboard.

Host
A physical computer.
Host Aggregate
An OpenStack method of grouping hosts via a common set of metadata. It enables you to tag
groups of hosts with certain capabilities or characteristics. A characteristic could be related
to physical location, allowing creation or further partitioning of availability zones. It could
also be related to performance (for example, indicating the availability of SSD storage) or
anything else that the cloud administrators deem appropriate. A host can be in more than
one host aggregate.

Hybrid Cloud
One of several deployment models for a cloud infrastructure. A composition of both public
and private clouds that remain unique entities, but are bound together by standardized
technology for enabling data and application portability. Integrating SUSE Studio and SUSE
Manager with SUSE OpenStack Cloud delivers a platform and tools with which to enable
enterprise hybrid clouds.

Hypervisor
A piece of computer software, firmware or hardware that creates and runs virtual machines.
It arbitrates and controls access of the virtual machines to the underlying hardware.

IaaS (Infrastructure-as-a-Service)
A service model of cloud computing where processing, storage, networks, and other
fundamental computing resources are rented over the Internet. It allows the customer
to deploy and run arbitrary software, including operating systems and applications. The
customer has control over operating systems, storage, and deployed applications but does
not control the underlying cloud infrastructure. Housing and maintaining it is in the
responsibility of the service provider.

Image
A file that contains a complete Linux virtual machine.
In the SUSE OpenStack Cloud context, images are virtual disk images that represent the
contents and structure of a storage medium or device (such as a hard disk), in a single file.
Images are used as a template from which a virtual machine can be started. For starting a
virtual machine, SUSE OpenStack Cloud always uses a copy of the image.
Images have both content and metadata; the latter are also called image properties.

Instance
A virtual machine that runs inside the cloud.
**Instance Snapshot**
A point-in-time copy of an instance. It preserves the disk state of a running instance and can be used to launch a new instance or to create a new image based upon the snapshot.

**Keypair**
OpenStack Compute injects SSH keypair credentials that are injected into images when they are launched.

**Keystone**
Code name for *OpenStack Identity*.

**libvirt**
Virtualization API library. Used by OpenStack to interact with many of its supported hypervisors.

**Linux Bridge**
A software allowing multiple virtual machines to share a single physical NIC within OpenStack Compute. It behaves like a hub: You can connect multiple (physical or virtual) network interface devices to it. Any Ethernet frames that come in from one interface attached to the bridge is transmitted to all other devices.

**Logical Volume (LV)**
Acts as a virtual disk partition. After creating a *Volume Group (VG)*, logical volumes can be created in that volume group. Logical volumes can be used as raw block devices, swap devices, or for creating a (mountable) file system like disk partitions.

**Migration**
The process of moving a virtual machine instance from one Compute Node to another. This process can only be executed by cloud administrators.

**Multicast**
A technology used for a one-to-many communication within a network that can be used for cluster communication. Corosync supports both multicast and unicast.

**Network**
In the OpenStack Networking API: An isolated L2 network segment (similar to a VLAN). It forms the basis for describing the L2 network topology in a given OpenStack Networking deployment.
Neutron

Code name for OpenStack Networking.

Node

A (physical) server that is managed by Crowbar.

Nova

Code name for OpenStack Compute.

Object

Basic storage entity in OpenStack Object Storage, representing a file that your store there. When you upload data to OpenStack Object Storage, the data is neither compressed nor encrypted, it is stored as-is.

Open vBridge

A virtual networking device. It behaves like a virtual switch: network interface devices connect to its ports. The ports can be configured similar to a physical switch's port, including VLAN configurations.

OpenStack

A collection of open source software to build and manage public and private clouds. Its components are designed to work together to provide Infrastructure as a Service and massively scalable cloud computing software.

At the same time, OpenStack is also a community and a project.

OpenStack Block Storage

One of the core OpenStack components and services (code name: Cinder). It provides persistent block level storage devices for use OpenStack compute instances. The block storage system manages the creation, attaching and detaching of the block devices to servers. Prior to the OpenStack Grizzly release, the service was part of nova-volume (block service).

OpenStack Compute

One of the core OpenStack components and services (code name: Nova). It is a cloud computing fabric controller and as such, the main part of an IaaS system. It provides virtual machines on demand.

OpenStack Dashboard

One of the core OpenStack components or services (code name: Horizon). It provides a modular Web interface for OpenStack services and allows end users and administrators to interact with each OpenStack service through the service's API.
OpenStack Identity
One of the core OpenStack components or services (code name: **Keystone**). It provides authentication and authorization for all OpenStack services.

OpenStack Image
One of the core OpenStack components or services (code name: **Glance**). It provides discovery, registration, and delivery services for virtual disk images.

OpenStack Networking
One of the core OpenStack components or services (code name: **Neutron**). It provides “network connectivity as a service” between interface devices (for example, vNICs) managed by other OpenStack services (for example, Compute). Allows users to create their own networks and attach interfaces to them.

OpenStack Object Storage
One of the core OpenStack components or services (code name: **Swift**). Allows to store and retrieve files while providing built-in redundancy and fail-over. Can be used for backing up and archiving data, streaming data to a user’s Web browser, or developing new applications with data storage integration.

OpenStack Service
A collection of Linux services (or daemons) that work together to provide core functionality within the OpenStack project. This can be storing objects, providing virtual servers, or authentication and authorization. All services have code names, which are also used in configuration files, and command line programs.

Orchestration
A module (code name: **Heat**) to orchestrate multiple composite cloud applications using file-based or Web-based templates. It contains both a user interface and an API and describes your cloud deployment in a declarative language. The module is an integrated project of OpenStack as of the Havana release.

PaaS (Platform-as-a-Service)
A service model of cloud computing where a computing platform and cloud-based application development tools are rented over the Internet. The customer controls software deployment and configuration settings, but not the underlying cloud infrastructure including network, servers, operating systems, or storage.
Pacemaker
An open source cluster resource manager used in SUSE Linux Enterprise High Availability Extension.

Port
In the OpenStack Networking API: An attachment port to an L2 OpenStack Networking network.

Private Cloud
One of several deployment models for a cloud infrastructure. The infrastructure is operated exclusively for a single organization and may exist on or off premises. The cloud is owned and managed by the organization itself, by a third party or a combination of both.

Private IP Address
See Fixed IP Address.

Project
A concept in OpenStack Identity. Used to identify a group, an organization, or a project (or more generically, an individual customer environment in the cloud). Also called tenant. The term tenant is primarily used in the OpenStack command line tools.

Proposal
Special configuration for a barclamp. It includes barclamp-specific settings, and a list of nodes to which the proposal should be applied.

Public Cloud
One of several deployment models for a cloud infrastructure. The cloud infrastructure is designed for use by the general public and exists on the premises of the cloud provider. Services like applications, storage, and other resources are made available to the general public for free or are offered on a pay-per-use model. The infrastructure is owned and managed by a business, academic or government organization, or some combination of these.

Public IP Address
See Floating IP Address.

qcow (QEMU Copy on Write)
A disk image format supported by the QEMU virtual machine manager. A qcow2 image helps to optimize disk space. It consumes disk space only when contents are written on it and grows as data is added.
qcow2 is a more recent version of the qcow format where a read-only base image is used, and all writes are stored to the qcow2 image.

**Quorum**

In a cluster, a *Cluster Partition* is defined to have quorum (is “quorate”) if it has the majority of nodes (or votes). Quorum distinguishes exactly one partition. It is part of the algorithm to prevent several disconnected partitions or nodes from proceeding and causing data and service corruption (*Split Brain*). Quorum is a prerequisite for *Fencing*, which then ensures that quorum is indeed unique.

**Quota**

Restriction of resources to prevent overconsumption within a cloud. In OpenStack, quotas are defined per project and contain multiple parameters, such as amount of RAM, number of instances, or number of floating IP addresses.

**RC File (openrc.sh)**

Environment file needed for the OpenStack command line tools. The RC file is project-specific and contains the credentials used by OpenStack Compute, Image, and Identity services.

**Recipe**

A group of Chef scripts and templates. Recipes are used by Chef to deploy a unit of functionality.

**Region**

An OpenStack method of aggregating clouds. Regions are a robust way to share some infrastructure between OpenStack compute installations, while allowing for a high degree of failure tolerance. Regions have a separate API endpoint per installation.

**Resource**

In a High Availability context: Any type of service or application that is known to the cluster resource manager. Examples include an IP address, a file system, or a database.

**Resource Agent (RA)**

A script acting as a proxy to manage a resource in a High Availability cluster. For example, it can start, stop or monitor a resource.

**Role**

In the Crowbar/Chef context: an instance of a *Proposal* that is active on a node.
In the *OpenStack Identity* context: concept of controlling the actions or set of operations that a user is allowed to perform. A role includes a set of rights and privileges. A user assuming that role inherits those rights and privileges.

**S3 (Amazon Simple Storage Service)**

An object storage by Amazon that can be used to store and retrieve data on the Web. Similar in function to OpenStack Object Storage. It can act as a back-end store for Glance images.

**SaaS (Software-as-a-Service)**

A service model of cloud computing where applications are hosted by a service provider and made available to customers remotely as a Web-based service.

**SBD (STONITH Block Device)**

In an environment where all nodes of a High Availability cluster have access to shared storage, a small partition is used for disk-based fencing.

**Security Group**

Concept in OpenStack Networking. A security group is a container for security group rules. Security group rules allow to specify the type of traffic and direction (ingress/egress) that is allowed to pass through a port.

**Single Point of Failure (SPOF)**

An individual piece of equipment or software which will cause system downtime or data loss if it fails. To eliminate single points of failure, High Availability systems seek to provide redundancy for crucial pieces of equipment or software.

**SLEShammer**

When you first boot a node in SUSE OpenStack Cloud via PXE, it is booted with the SLEShammer image. This performs the initial hardware discovery, and registers the node with Crowbar. After you allocate the node, it is rebooted with a regular SLES installation image.

**Snapshot**

See *Volume Snapshot* or *Instance Snapshot*.

**Split Brain**

Also known as a “partitioned cluster” scenario. Either through a software or hardware failure, the cluster nodes are divided into two or more groups that do not know of each other. *STONITH* prevents a split brain situation from badly affecting the entire cluster.
Stateful Service
A service where subsequent requests to the service depend on the results of the first request.

Stateless Service
A service that provides a response after your request, and then requires no further attention.

STONITH
The acronym for “Shoot the other node in the head”. It refers to the fencing mechanism that shuts down a misbehaving node to prevent it from causing trouble in a cluster.

Storage Node
Node within a SUSE OpenStack Cloud. Acts as the controller for cloud-based storage. A cloud can contain multiple Storage Nodes.

Subnet
In the OpenStack Networking API: A block of IP addresses and other network configuration (for example, a default gateway, DNS servers) that can be associated with an OpenStack Networking network. Each subnet represents an IPv4 or IPv6 address block. Multiple subnets can be associated with a network, if necessary.

SUSE Linux Enterprise High Availability Extension
An integrated suite of open source clustering technologies that enables you to implement highly available physical and virtual Linux clusters.

SUSE OpenStack Cloud Administrator
User role in SUSE OpenStack Cloud. Manages projects, users, images, flavors, and quotas within SUSE OpenStack Cloud.

SUSE OpenStack Cloud Dashboard
The SUSE® OpenStack Cloud Dashboard is a Web interface that enables cloud administrators and users to manage various OpenStack services. It is based on OpenStack Dashboard (also known under its codename Horizon).

SUSE OpenStack Cloud Operator
User role in SUSE OpenStack Cloud. Installs and deploys SUSE OpenStack Cloud.

SUSE OpenStack Cloud User
User role in SUSE OpenStack Cloud. End user who launches and manages instances, can create snapshots, and use volumes for persistent storage within SUSE OpenStack Cloud.
Swift

Code name for *OpenStack Object Storage*.

TAP Device

A virtual networking device. A TAP device, such as `vnet0` is how hypervisors such as KVM and Xen implement a virtual network interface card (vNIC). An Ethernet frame sent to a TAP device is received by the guest operating system. The tap option connects the network stack of the guest operating system to a TAP network device on the host.

Telemetry

A module (code name: *Ceilometer*) for metering OpenStack-based clouds. The project aims to provide a unique point of contact across all OpenStack core components for acquiring metrics. The metrics can then be consumed by other components such as customer billing. The module is an integrated project of OpenStack as of the Havana release.

Tenant

See *Project*.

Unicast

A technology for sending messages to a single network destination. Corosync supports both multicast and unicast. In Corosync, unicast is implemented as UDP-unicast (UDPU).

User

In the OpenStack context, a digital representation of a person, system, or service who uses OpenStack cloud services. Users can be directly assigned to a particular project and behave as if they are contained in that project.

Veth Pair

A virtual networking device. The acronym veth stands for virtual Ethernet interface. A veth is a pair of virtual network interfaces correctly directly together. An Ethernet frame sent to one end of a veth pair is received by the other end of a veth pair. OpenStack Networking uses veth pairs as virtual patch cables to make connections between virtual bridges.

VLAN

A physical method for network virtualization. VLANs allow to create virtual networks across a distributed network. Disparate hosts (on independent networks) appear as if they were part of the same broadcast domain.
VM (Virtual Machine)
An operating system instance that runs on top of a hypervisor. Multiple virtual machines can run on the same physical host at the same time.

vNIC
Virtual network interface card.

Volume
Detachable block storage device. Unlike a SAN, it can only be attached to one instance at a time.

Volume Group (VG)
A virtual disk consisting of aggregated physical volumes. Volume groups can be logically partitioned into logical volumes.

Volume Snapshot
A point-in-time copy of an OpenStack storage volume. Used to back up volumes.

vSwitch (Virtual Switch)
A software that runs on a host or node and provides the features and functions of a hardware-based network switch.

Zone
A logical grouping of Compute services and virtual machine hosts.