Linux Clusters Made Easy
with the SUSE® Linux Enterprise High Availability Extension

Dan Elder
Linux Services Manager
delder@novacoast.com

Lars Marowsky-Brée
Distinguished Engineer
lmb@suse.com
Agenda

Introduction

Summary of cluster architecture

Common configuration issues

Gathering cluster-wide support information

Exploring effects of cluster events

Self-written resource agents

Understanding log files
Introduction
Overview
SUSE® Linux Enterprise High Availability Extension

• Most modern and complete open source solution for implementing high available Linux clusters

• A suite of robust open source technologies that is:
 – Affordable
 – Integrated
 – Virtualization agnostic

• Used with SUSE Linux Enterprise Server, it helps to:
 – Maintain business continuity
 – Protect data integrity
 – Reduce unplanned downtime for your mission-critical Linux workloads
Fighting Murphy's Law

- Service failover at any distance – from local to geo
- 99.9999% availability with the appropriate tuning
- Rolling updates for less *planned* downtime
- Easy setup, administration, management
- Virtualization agnostic
- Leading open source High Availability
- On par with proprietary products
Benefits
SUSE® Linux Enterprise High Availability

- Quickly and easily install, configure and manage clustered Linux servers
- Ensure continuous access to your mission-critical systems and data
- Transparent to Virtualization – nodes can be virtual or physical
- Meet your Service Level Agreements
- Increase service availability
Overview
SUSE® Linux Enterprise High Availability Extension

• Service availability 24/7
 - Policy driven clustering

• Shared and Scaled data-access
 - Cluster file system
 - Clustered Samba

• Geo Clustering
 - Cluster across unlimited distance

• Virtualization Agnostic
 - Platform independent setup

• Disaster tolerance
 - Data replication via IP
 - Node recovery

• Scale network services
 - IP load-balancing

• User friendly tools
 - Graphical user interface
 - Unified command line interface

• Free Resource Agents
Delivery
SUSE® Linux Enterprise High Availability Extension

- Extension to and with SUSE Linux Enterprise Server
- Releases synchronized with base server product
- Sold as annual support subscriptions
- Inherits the support level of the underlying SUSE Linux Enterprise Server subscription
- Included for free with Itanium, IBM Power, and IBM System z subscriptions
- Charged for x86 and AMD64&Intel64
- Free trial available
Key Use Cases
SUSE® Linux Enterprise High Availability Extension

• High availability for mission-critical services
• Active/active services
 ‒ OCFS2, Databases, Samba File Servers
• Active/passive service fail-over
 ‒ Traditional databases, SAP setups, regular services
• Private Cloud
 ‒ HA, automation and orchestration for managed VMs
• High availability across guests
 ‒ Fine granular monitoring and HA on top of virtualization
• Remote clustering
 ‒ Local, Metro, and Geographical area clusters
Key Use Cases
SUSE® Linux Enterprise High Availability Extension

Simple Stack HA
- Node A: Local Disk /sapmnt /SID
- Node B: Local Disk /sapmnt /SID
- NFS Mount Point before Switchover
- Equivalent setup for /usr/sap/trans /sapdb/programs /sapdb/data possible.

Enqueue Replication
- Resource failover active / active
- Lock table replication
- SAP system - database - SAP (A)SCS
- SAP system - SAP Enq-Repl

DRBD Data Replication
- DRBD data replication active / active
- Data Center 1
- Data Center 2

NFS and SAP in one Cluster
- Node A: Local Disk /import /export
- Node B: Local Disk /import /export
- SID global profile exe
- SID export /sapmnt /SID

HA in Virtualized Environments
- Cluster nodes on virtual systems
- Clustered Hyper Visor on physical systems
Service Pack 2 – **Added Features**
SUSE® Linux Enterprise High Availability Extension

- **Easy Installation and Set-Up**
 - Cluster Bootstrap & Join
 - Templates and Wizards
- **Improved Supportability**
 - History Explorer
 - Log File Query Tools
- **Efficient Management**
 - Access Control Lists
 - Enhanced Web Console
- **Improved Reliability**
 - Multiple SBD devices for storage-based fencing
- **Additional Capabilities**
 - Joining of Clustered SAMBA to Active Directory
 - Load Balancer Connection Tracking and Replication
 - ReaR support for SUSE boot media
Service Pack 3 – **Added Features**
SUSE® Linux Enterprise High Availability Extension

- **Managing remote resources**
 - Black Box / remote monitoring

- **Management**
 - Dashboard to manage multiple clusters
 - Display setup in a Cluster Diagram

- **Usability**
 - Improved web console

- **Supportability**
 - Cluster Simulator with configuration changes
 - Enhanced History Explorer

- **Administration**
 - Pacemaker, YaST2, & Resource Agents

- **Supportability**
 - Cluster Simulator with configuration changes
 - Enhanced History Explorer
Blackbox Monitoring

• Remote monitoring of resources
 – no High Availability components needed
 – re-use of Nagios plugins
• Improved handling of virtual guests
 – monitor virtual services from the hypervisor
 – improve protection of VMs as cluster workload
 – guests remain unaltered – monitoring is external
• Extends pacemaker to include the concept of “container” resources
Hawk – Cluster Dashboard & Diagram

Cluster Dashboard

- **test**
 - **Cluster has errors - click for details**

- **Tickets**
 - ✓ Granted: 1
 - ○ Revoked: 1

- **2 nodes configured**
 - ▶ Online: 1
 - ● Standby: 1

- **9 resources configured**
 - ▶ Started: 4
 - ■ Stopped: 5
Usability - Hawk

Cluster Status

Summary
- Cluster Configuration
 - STONITH Enabled: true
 - No Quorum Policy: ignore
 - Symmetric Cluster: true
 - Resource Stickiness: 0

Tickets
- Granted: 1
- Revoked: 1

2 nodes configured
- Online: 1
- Standby: 1

9 resources configured
- Started: 4
- Stopped: 5

Details
- xxx: Started: sles11sp3-1
- www: Started: sles11sp3-1
- dummy: Started: sles11sp3-1
- d2: Started: sles11sp3-1

www

Attributes
- target-role: Started
- sles11sp3-0
 - Fail Count: 0
- sles11sp3-1
 - Fail Count: 1
 - Last Failure: Mon Feb 11 2013 16:03:11 GMT+1100 (EST)
Cluster Architecture
3 Node Cluster Overview

Network Links

- Xen VM 1
- LAMP Apache IP ext3
- cLVM2+OCFS2
- DLM
- Pacemaker
- Corosync + openAIS
- Kernel

Client

- Storage

Xen VM 2
Detailed View of Components
Per Node: (WIP, a bit out-of-date!)
Why Is This Talk Necessary?

We heard comments:

- Can't you just make the software stack really easy to understand?
- Why is a multi-node setup more complicated than a single node?
- Gosh, this is awfully complicated! Why is this stuff so powerful? I don't need those other features!

This session addresses most of these questions.
Sample Customer Implementations
La Curacao

• Failover Database Environment
 – Core Database Required for Store Price Lookups
 – Shared SAN Storage
 – Redundant Switches
 – IPMI STONITH
 – Heavily Tuned Timeouts
 – Heavily Tested
 – 0 Unnecessary Failovers in 4 Years
Cutting Corners
Major Medical Testing Facility

- Failover Database Environment
 - Mixed Workload Cluster (Database and Application Layer)
 - ReaR for Remote DR
 - SBD STONITH
 - Complex Placement Rules
 - Started as SLES 10 Cluster
 - In Production for 6+ Years
Cluster Design
Recent Features That Make the Cluster Easier
Reducing CIB Duplication

- Resource templates
 - Define resources once, inherit often
 - Define a constraint just once, all inherited resources

```bash
rsc_template t_vm ocf:heartbeat:VirtualDomain \  
  op monitor interval="20s" timeout="60s" \  
  op migrate_to timeout="300s" interval="0" \  
  op migrate_from timeout="300s" interval="0" \  
  meta allow-migrate="false" target-role="Started" \  
  utilization cpu="2" memory="1024" \  
  params autoset_utilization_cpu="false"  
  migration_transport="ssh"  
  hypervisor="qemu:///system"  
  autoset_utilization_hv_memory="false"force_stop="true"  

primitive vm-01 @t_vm \  
  params config="/cluster/vmstore/vm-01.xml"  

primitive vm-02 @t_vm \  
  params config="/cluster/vmstore/vm-02.xml"  

...  

colocation colo-fs-vm inf: t_vm baseclone  
order order-fs-vm Mandatory: baseclone t_vm
Automate Resource Placement

- Define the capacity that nodes provide &
- Specify how much capacity resources consume
- Set “placement-strategy=balanced”
- Nodes will never over-commit, and make a reasonable attempt at load distribution
- Avoid lengthy & complex rsc_location constraints

```bash
node hex-1 \
 utilization memory="8192" cpu="32"
primitive dummy1 ocf:heartbeat:Dummy \
 utilization cpu="1" memory="512"
```
crm Shell Improvements

- Find out what resource agents are doing, exactly!
  - # crm resource (un)trace sap_DB start

- Test a resource before committing:
  - # crm configure rsctest sap_DB

- Interrogate the cluster history
  - # crm history help
Design and Architecture Considerations
General Considerations

• Consider the support level requirements of your mission-critical systems.

• Your staff is your key asset!
  – Invest in training, processes, knowledge sharing.
  – A good administrator will provide higher availability than a mediocre cluster setup.

• Get expert help for the initial setup, and

• Write concise operation manuals that make sense at 3am on a Saturday ;-)

• Thoroughly test the cluster regularly.
  – Use a staging system before deploying large changes!
Manage Expectations Properly

- Clustering improves reliability, but does not achieve 100%, ever.
- Fail-over clusters **reduce** service outage, but do not eliminate it.
- High Availability protects **data** before the **service**.
- Clusters are more complex than single nodes.
- Clustering broken applications will not fix them.
- Clusters do not replace backups, RAID, or good hardware.
Complexity Versus Reliability

• Every component has a failure probability.
  ‒ Good complexity: Redundant components.
  ‒ Undesirable complexity: chained components.
  ‒ Choke point → single point of failure
  ‒ Also consider: Administrative complexity.

• Use as few components (features) as feasible.
  ‒ Our extensive feature list is not a mandatory checklist for your deployment ;-)

• What is your fall-back in case the cluster breaks?
  ‒ Backups, non-clustered operation
  ‒ Architect your system so that this is feasible!
Cluster Size Considerations

• More nodes:
  - Increased absolute redundancy and capacity.
  - Decreased relative redundancy.
  - One cluster $\rightarrow$ one failure and security domain.
  - HA is not HPC.

• Does your work-load scale well to more nodes?

• Choose odd node counts
  - 4 and 3 node clusters both lose majority after 2 nodes.

• Question:
  - 5 cheaper servers, or
  - 3 higher quality servers with more capacity each?
Common Setup Issues
General Software Stack

• Please avoid chasing already solved problems!

• Please apply all available software updates:
  – SUSE® Linux Enterprise Server 11 SP3
  – SUSE Linux Enterprise High Availability Extension

• Consider migrating to SUSE Linux Enterprise High Availability Extension 11 SP3, if you have not already.
  – Usability, ease of setup, integration are all much improved.
  – SUSE Linux Enterprise Server 10 remains fully supported.
From One to Many Nodes

- **Error**: Configuration files not identical across nodes.
  - /etc/drbd.conf, /etc/corosync/corosync.conf, /etc/ais/openais.conf, resource-specific configurations ...

- **Symptoms**: Causes weird misbehavior, works one but not on other systems, interoperability issues, and possibly others.

- **Solution**: Make sure they are synchronized.
  - SUSE® Linux Enterprise High Availability Extension 11 SP2 provides “csync2” to do this automatically for you.
  - You can add your own files to this list as needed.
Networking

- Switches must support multicast properly.
- Bonding is preferable to using multiple rings:
  - Reduces complexity
  - Exposes redundancy to all cluster services and clients
- Firewall rules are not your friend.
- Keep firmware on switches uptodate!
- Make NIC names identical on all nodes
- Local hostname resolution versus DNS
- Setup NTP for time synchronization.
Fencing (STONITH)

• Error: Not configuring STONITH at all
  - It defaults to enabled, resource start-up will block and the cluster simply do nothing. This is for your own protection.

• Warning: Disabling STONITH
  - DLM/OCFS2 will block forever waiting for a fence that is never going to happen.

• Error: Using “external/ssh”, “ssh”, “null” in production
  - These plug-ins are for testing. They will not work in production!
  - Use a “real” fencing device or external/sbd

• Error: configuring several power switches in parallel.

• Error: Trying to use external/sbd on DRBD
CIB Configuration Issues

• 2 node clusters cannot have majority with 1 node failed
  - # crm configure property no-quorum-policy=ignore

• Resources are starting up in “random” order or on “wrong” nodes
  - Add required constraints!

• Resources move around when something “unrelated” changes
  - # crm configure property default-resource-stickiness=1000

• # crm_verify -L ; ptest -L -V V V V V
  - Will point out some basic issues

We'll get back to that ...
Configuring Cluster Resources

- **Symptom**: On start of one or more nodes, the cluster restarts resources!

- **Cause**: resources under cluster control are also started via the “init” sequence.
  - The cluster “probes” all resources on start-up on a node, and when it finds resources active where they should not be – possibly even more than once in the cluster –, the recovery protocol is to stop them all (including all dependencies) and start them cleanly again.

- **Solution**: Remove them from the “init” sequence.
Setting Resource Time-outs

- **Belief**: “Shorter time-outs make the cluster respond faster.”

- **Fact**: Too short time-outs cause resource operations to “fail” erroneously, making the cluster unstable and unpredictable.
  - A somewhat too long time-out will cause a fail-over delay;
  - a slightly too short time-out will cause an unnecessary service outage.

- Consider that a loaded cluster node may be slower than during deployment testing.
  - Check “crm_mon -t1” output for the actual run-times of resources.
OCFS2

- Using ocfs2-tools-o2cb (legacy mode)
  - O2CB only works with Oracle RAC; full features of SUSE® Linux Enterprise High Availability Extension are only available in combination with Pacemaker
  - # zyppermocfs2-tools-o2cb
  - Forget about /etc/ocfs2/cluster.conf, /etc/init.d/ocfs2, /etc/init.d/o2cb and /etc/sysconfig/ocfs2

- Nodes crash on shutdown
  - If you have active ocfs2 mounts, you need to umount before shutdown
  - If openais is part of the boot sequence
    - # insserv openais

- Consider: Do you really need OCFS2?
  - Can your application really run concurrently?
Distributed Replicated Block Device

• Myth: has no shared state, thus no STONITH needed.
  – **Fact:** DRBD still needs fencing!

• Active/Active:
  – Does not magically make ext3 or applications concurrency-safe, still can only be mounted once
  – With OCFS2, split-brain is still fatal, as data diverges!

• Active/Passive:
  – Ensures only one side can modify data, added protection.
  – Does not magically make applications crash-safe.

• Issue: Replication traffic during reads.
  – “noatime” mount option.
Storage in General

- Activating non-battery backed caches for performance
  - Causes data corruption.

- iSCSI over unreliable networks.

- Lack of multipath for storage.

- Believing that RAID replaces backups.
  - RAID and replication immediately propagate logical errors!

- Please ensure that device names are identical on all nodes.
Exploring the Effect of Events
What Are Events?

- All state changes to the cluster are **events**
  - They cause an update of the CIB
  - Configuration changes by the administrator
  - Nodes going up or going down
  - Resource monitoring failures

- Response to events is configured using the CIB policies and computed by the Policy Engine

- This can be simulated using `ptest`
  - Available comfortably through the “crm” shell
Simulating Node Failure

hex-0:~ # crm

crm(live)# cib new sandbox

INFO: sandbox shadow CIB created

crm(sandbox)# cib cibstatus node hex-0 unclean

crm(sandbox)# simulate
Simulating Node Failure
Simulating Resource Failure

crm(sandbox) # cib cibstatus load live

crm(sandbox) # cib cibstatus op

usage: op <operation> <resource> <exit_code> [<op_status>] [<node>]

crm(sandbox) # cib cibstatus op start
dummy1 not_running done hex-0

crm(sandbox) # cib cibstatus op start
dummy1 unknown timeout hex-0

crm(sandbox) # configure simulate

ptest[4918]: 2010/02/17_12:44:17 WARN: unpack_rsc_op:
Processing failed op dummy1_start_0 on hex-0: unknown error (1)
Simulating Resource Failure

dummy1_stop_0 hex-0

all_stopped
dummy1_start_0 hex-0
dummy1_monitor_5000 hex-0
Exploring Configuration Changes

```bash
crm(sandbox) # cib cibstatus load live

crm(sandbox) # configure primitive dummy42 ocf:heartbeat:Dummy

crm(sandbox) # simulate actions nograph

notice: LogActions: Start dummy42 (hex-2)
```
Configuration Changes - Woah!
Log Files and Their Meaning
hb_report Is The Silver Support Bullet

• Compiles
  – Cluster-wide log files,
  – Package state,
  – DLM/OCFS2 state,
  – System information,
  – CIB history,
  – parses core dump reports (install debuginfo packages!)
  – into a single tarball for all support needs.

• # hb_report -n “node1 node2 node3” -f 12:00 /	mp/hb_report_example1
Logging

• “The cluster generates too many log messages!”
  - Alas, customers are even more upset when asked to reproduce a problem on their production system ;-) 

• System-wide logs: /var/log/messages

• CIB history: /var/lib/pacemaker/pengine/*
  - All cluster events are logged here and can be analyzed with hindsight (python GUI, ptest, and the crm shell).

• Logging can be selectively bumped to “blackbox” logging at runtime for debugging
Where Is the Real Cause?

- The answer is **always** in the logs
- Even though the logs on the DC may print a reference to the error, the real cause may be on another node.
- Most errors are caused by resource agent misconfiguration.
Correlating Messages to Their Cause

- Feb 17 13:06:57 hex-8 pengine: [7717]: WARN: unpack_rsc_op: Processing failed op ocfs2-1:2_monitor_20000 on hex-0: not running (7)
  - This is **not** the failure, just the Policy Engine reporting on the CIB state! The real messages are on hex-0, grep for the operation key:

- Feb 17 13:06:57 hex-0 Filesystem[24825]: [24861]: INFO: /filer is unmounted (stopped)

- Feb 17 13:06:57 hex-0 crmd: [7334]: info: process_lrm_event: LRM operation ocfs 2-1:2_monitor_20000 (call=37, rc=7, cib-update=55, confirmed=false) not running
  - Look for the error messages from the **resource agent** before the lrmd/pengine lines!
History Info (loads the report)

```
xen-f:~ #crm history info
INFO: fetching new logs, please wait ...
Source: live
Created on: Thu Sep 12 12:58:41 CEST 2013
By: hb_report -Z -f Thu Sep 12 11:56:18 2013 /var/cache/crm/history/live
Nodes: xen-f xen-g
Groups: web-server nfs
Resources: s-libvirt drbd0-vg fs virtual-ip nfs-server web-ip apache p_drbd_nfs
 s-sbd
Transitions: 651 652 653
xen-f:~ #
```

```
Source: bug-825765_hb_report-Mon-13-May-2013.tar.bz2
Created on: --:--:--
By: unknown
Nodes: rad4-a rad4-b
Groups: network_grp
Resources: fence phmd snmp_mon service_ip default_gw RP mibreader dbrads pingnet
Transitions: 66 67 68 70 71 72 73 74 75 76 77 78 3 4 335 336 337 338 339
[0]hex-10:825765 >
```
Basic Transition Usage

crm(live)# resource start apache
crm(live)# history transition
INFO: fetching new logs, please wait ...
INFO: running ptest with /var/cache/crm/history/live/xen-f/pengine/pe-input-638.bz2
INFO: starting dotty to show transition graph
warning: unpack_nodes: Blind faith: not fencing unseen nodes
  total 4 actions: 4 Complete
Sep  5 15:18:17 xen-f crmd[12627]:  notice: te_rsc_command: Initiating action 28: start apache_start_0 on xen-f (local)
Sep  5 15:18:18 xen-f apache(apache)[29141]:  INFO: httpd2: Could not reliably determine the server's fully qualified domain name, using 10.2.13.56 for ServerName
Sep  5 15:18:18 xen-f crmd[12627]:  notice: process_lrm_event: LRM operation apache_start_0 (call=309, rc=0, cib-update=370, confirmed=true) ok

Resource Events

- Tue Sep 15 20:46:27 CEST 2010

Usage:

         limit [<from_time> [<to_time>]]

Examples:

         limit 10:15
         limit 15h22m 16h
         limit "Sun 5 20:46" "Sun 5 22:00"

crm(live)history# timeframe 15:17
crm(live)history# resource apache
INFO: 23: fetching new logs, please wait ...
Sep  5 15:18:17 xen-f crmd[12627]: notice: te_rsc_command: Initiating action 28: start apache_start_0 on xen-f (local)
Sep  5 15:18:18 xen-f apache(apache)[29141]: INFO: httpd2: Could not reliably dete
          mine the server's fully qualified domain name, using 10.2.13.56 for Serv
          e
Sep  5 15:18:18 xen-f crmd[12627]: notice: process_lrm_event: LRM operation ap
          ache_start_0 (call=309, rc=0, cib-update=370, confirmed=true) ok
crm(live)history#  

Node Events

```
crm(live)history#
crm(live)history#
crm(live)history#
crm(live)history#
crm(live)history#
crm(live)history# node xen-g
Sep 5 16:54:26 xen-f corosync[12617]: [pcmk] info: pcmpk_peer_update: lost: xen-g 957153802
Sep 5 16:54:26 xen-f pengine[12626]: warning: pe_fence_node: Node xen-g will be fenced because the node is no longer part of the cluster
Sep 5 16:54:26 xen-f pengine[12626]: warning: stage6: Scheduling Node xen-g for STONITH
Sep 5 16:54:26 xen-f crmd[12627]: notice: te_fence_node: Executing reboot fencing operation (47) on xen-g (timeout=60000)
Sep 5 16:54:37 xen-f stonith-ng[12623]: notice: log_operation: Operation 'reboot' [10441] (call 3 from crmd.12627) for host 'xen-g' with device 's-sbd' returned: 0 (OK)
Sep 5 16:55:17 xen-g corosync[2766]: [MAIN] Corosync Cluster Engine ('1.4.6') : started and ready to provide service.
crm(live)history#
crm(live)history#
crm(live)history#
crm(live)history#
crm(live)history#
crm(live)history#
```
Debugging Resource Agents
Common Resource Agent Issues

• Operations must succeed if the resource is already in the requested state.

• “monitor” must distinguish between at least “running/OK”, “running/failed”, and “stopped”
  - Probes deserve special attention

• Meta-data must conform to DTD.

• 3rd party resource agents do not belong under /usr/lib/ocf/resource.d/heartbeat – chose your own provider name!

• Use ocf-tester to validate your resource agent.
ocf-tester Example Output

hex-0:~ # ocf-tester -n Example
/usr/lib/ocf/resource.d/bs2010/Dummy

Beginning tests for /usr/lib/ocf/resource.d/bs2010/Dummy...

* Your agent does not support the notify action (optional)
* Your agent does not support the demote action (optional)
* Your agent does not support the promote action (optional)
* Your agent does not support master/slave (optional)

* rc=7: Stopping a stopped resource is required to succeed

Something Hangs and I Don’t Know Where ... 

```
hex-0:~ # export OCF_RESKEY_sid=MyDB
hex-0:~ # bash -x
/usr/lib/ocf/ocf/resource.d/heartbeat/oracle
monitor 2>&1 | \
while read L ; do echo "$(date) $L" ;
done
```
More about High Availability with SUSE Linux Enterprise

**CAS1417** A Xen cluster success story using the SLES HA Extension

**CAS1589** A carrier grade cloud phone system based on SUSE Linux Enterprise Server

**TT1395** How to Build an HA environment with Linux on IBM System z

**TT1449** How To Make Databases on SUSE Linux Enterprise Server Highly Available

Thank you.
Questions and Answers
Unpublished Work of SUSE. All Rights Reserved.
This work is an unpublished work and contains confidential, proprietary and trade secret information of SUSE. Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope of their assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified, translated, abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE. Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer
This document is not to be construed as a promise by any participating company to develop, deliver, or market a product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. SUSE makes no representations or warranties with respect to the contents of this document, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The development, release, and timing of features or functionality described for SUSE products remains at the sole discretion of SUSE. Further, SUSE reserves the right to revise this document and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in this presentation are trademarks or registered trademarks of Novell, Inc. in the United States and other countries. All third-party trademarks are the property of their respective owners.