Non disruptive migration of Ceph storage from community Hammer version to SUSE enterprise Storage 5.5

April 4, 2019

Hironobu Ishii, Fujitsu Limited, ishii.hironobu@fujitsu.com

Michiko Nogi, Sr. Storage Technologist, SUSE, michiko.nogi@suse.com
Agenda

- About us
- Introduction of Fujitsu
- Non disruptive migration
 - Project background
 - Migration overview
 - Migration steps
 - Conclusion
About us

Hironobu Ishii, Linux Development Div., Fujitsu Japan

These days

- Director,
 - Customer support of SUSE products like SLES, SOC, SES (2016-now)
 - Helping hardware development team solve issues with SUSE products (2016-now)
 - Internal support of FUJITSU public cloud infrastructure (2015-2018)

In the past

- Director/Manager, customer support of Red Hat products (2004-2014)
 - FC driver development / FC-HBA architect
 - NIC drivers, Protocol drivers development

Copyright 2019 FUJITSU LIMITED
Michiko Nogi, SUSE based in Japan

These days
- Sr. Storage Technologist for SUSE APAC
 - Work on with APAC customers & partners to support & implement SES solutions & systems

In the past
- Principal Engineer for System Engineering in SanDisk (HGST, Western Digital)
 - Work on Ceph & SDS solution and system to integrate All Flash and High density storage
- Senior Systems Engineer for EMC
 - Work as technical solution consultant to implement Unified storage for hundreds of customer sites
- Systems Engineer for NetApp
 - Work with largest partner to implement many telecom, manufacturing & other customers sites
- Others
Fujitsu at a glance

- Headquarters: Tokyo, Japan
- Established: 1935
- President: Tatsuya Tanaka
- Principal Business Areas:
 - Technology Solutions
 - Ubiquitous Solutions
 - Device Solutions
- Employees: 140,000 worldwide

- Revenue: 4,098.3 billion yen
- Operating profit: 182.4 billion yen
- R&D Expenses: 158.6 billion yen (Approx. 3.9% of Revenue)
- Stock Exchange Listings:
 - Tokyo (Code:6702), Nagoya
Non disruptive migration
Project background

- In initial phase, customer purchased InkTank pre-production service. Then InkTank was acquired by Red Hat. Then customer purchased support service from a vendor. But they felt that support quality of the vendor was not good. They stopped buying support service.
 - Customer uses various OSS, and various OSes as Ceph client.
 - The vendor's support was formalistic and did not respond seriously to customer issues.
- Some years later, customer had a hope to upgrade Ceph version, and to get support services from a distributor. Then customer contacted SUSE.
- SUSE and FUJITSU started POC for this customer.
Migration overview

Starting point

node1: MON+OSD
node2: MON+OSD
node3: MON+OSD
node4: RGW, OSD
node5: RGW, OSD
node6: OSD

Ubuntu 14.04 (Trusty)
Ceph Hammer

Goal

node1: MON+OSD
node2: MON+OSD
node3: MON+OSD
node4: RGW, OSD
node5: RGW, OSD
node6: OSD

SLES12 SP3
SES 5.5 (Ceph Luminous)

OSD: Object Storage Device
MON: Monitor daemon
RGW: RADOS Gateway

of OSD: 6
of MON: 3
of RGW: 2
Migration process planning

Stated Goals
- Convert existing Community based Ceph installations to SES5
- Minimize disruption potential

Pre-requisites
- Each cluster is running the most current RHCS or community Ceph
- There is enough spare capacity on the cluster to accommodate a failed node
Two Choices

1. Drain the node and rebuild with BlueStore
 1. Slower process
 2. Ensures the OSDs are using BlueStore
 3. Least risk because of NOT trying to import existing OSD

2. Maintain existing OSDs and do not migrate to BlueStore
 1. No data migration
 2. Uncertainty about existing OSDs importing cleanly, which requires additional testing/validation
Migration steps

1. Upgrade Ceph Hammer to Jewel on Ubuntu 14.04 (FileStore)
2. Upgrade Ceph Jewel to Luminous on Ubuntu 14.04 (FileStore)
3. Replace the OS and install SES5.5 (FileStore)
4. Configure DeepSea/Salt and openATTIC
5. Convert OSD from FileStore to BlueStore using Salt.
Is it possible to jump form Hammer to Luminous?

- Do we need two steps to upgrade from Hammer to Luminous?
 1. Ubuntu Ceph **Hammer to Jewel** (FileStore)
 2. Ubuntu Ceph **Jewel to Luminous** (FileStore)

- We tried it anyway.

Copyright 2019 FUJITSU LIMITED
Jump from Hammer to Luminous was not possible

- When we start `mon`, `osd` daemons, `mon` daemon disappeared.

```
root@ceph-node1:~# ceph -v
ceph version 12.2.10 (177915764b752804194937482a39e95e0ca3de94) luminous (stable)
root@ceph-node1:~/ceph-luminous/download.ceph.com/debian-luminous/pool/main/c/ceph# ps aux | grep ceph
avahi    713  0  0  32360  1680 ?    S   Mar22   0:00 avahi-daemon: running [ceph-node1.local]
root   1284  0  0.8 308380  69764 ?   Ssl  Mar22  7:55 /usr/bin/ceph-mon --cluster=ceph -i ceph-node1 -f
root   1534  0.2 1.2 826420 101132 ?  Ssl  Mar22 28:59 /usr/bin/ceph-osd --cluster=ceph -i 0 -f
root  16430  0  0 8876  648 pts/4   S+   15:23  0:00 grep --color=auto ceph
root@ceph-node1:~# kill -15 1284 1534

root@ceph-node1:~# ps aux | grep ceph
avahi    713  0  0  32360  1680 ?    S   Mar22   0:00 avahi-daemon: running [ceph-node1.local]
root   1534  0.2 1.2 826420 101132 ?  Ssl  Mar22 29:00 /usr/bin/ceph-osd --cluster=ceph -i 0 -f
root  16437  4.5  0.2 290652 19944 ?  Ssl  15:26  0:00 /usr/bin/ceph-mon --cluster=ceph -i ceph-node1 -f
root  16439 1.5  0  34164  7524 ?    Ss   15:26  0:00 /usr/bin/python /usr/sbin/ceph-create-keys --cluster=ceph -i ceph-node1
root  16444 2.5  0.2 248692 17372 ?  S    15:26  0:00 /usr/bin/python2.7 /usr/bin/ceph --cluster=ceph --admin-daemon=/var/run/ceph/ceph-mon.ceph-node1.asok mon_status
root  16454  0  0 8876  648 pts/4   S+   15:26  0:00 grep --color=auto ceph
```
Luminous mon cannot coexist with Hammer mons (1/2)

root@ceph-node1:~ # /usr/bin/ceph-mon --id ceph-node1 -c /etc/ceph/ceph.conf
terminate called after throwing an instance of 'ceph::buffer::malformed_input'
what(): buffer::malformed_input: void object_stat_sum_t::decode(ceph::buffer::list::iterator&) decode past end of struct encoding
*** Caught signal (Aborted) **
in thread 7f410afeef40 thread_name:ceph-mon
ceph version 12.2.10 (177915764b75280419437482a39e95e0ca3de94) luminous (stable)
1: (l)+0x931669 [0x7f410b945669]
2: (l)+0x10330 [0x7f410a3ac330]
3: (gsignal()+0x37) [0x7f4108997c37]
4: (abort()+0x148) [0x7f410899b028]
5: (__gnu_cxx::__verbose_terminate_handler()+0x155) [0x7f41092a6535]
11: (pg_stat_t::decode(ceph::buffer::list::iterator&)+0x1d5) [0x7f410b7716f5]
12: (PGMap::update_pg(pg_t, ceph::buffer::list&)+0xf4) [0x7f410b4c1d84]
13: (PGMonitor::read_pgmap_full()+0x161) [0x7f410b4913a1]
14: (PGMonitor::update_from_paxos(bool*)+0xf4) [0x7f410b498d99]
15: (PaxosService::refresh(bool*)+0x1a3) [0x7f410b529593]
16: (Monitor::refresh_from_paxos(bool*)+0x183) [0x7f410b3f6ca3]
17: (Monitor::init_paxos()+0xfd) [0x7f410b5f707d]
18: (Monitor::preinit()+0xa7e) [0x7f410b3f7b3e]
19: (main()+0xbfa) [0x7f410b3265ea]
20: (libc_start_main()+0xf5) [0x7f410b8982f45]
21: (l)+0x3b933e [0x7f410b3cd33e]
2019-03-29 16:02:35.555503 7f410afeef40 -1 *** Caught signal (Aborted) **
in thread 7f410afeef40 thread_name:ceph-mon
Luminous mon cannot coexist with Hammer mons (2/2)

root@ceph-node1:~# ceph -s
cluster f721b1f2-9489-4053-b06e-79e6f3ded466
health HEALTH_WARN
 128 pgs stale
 128 pgs stuck stale
 1 mons down, quorum 1,2 ceph-node2, ceph-node3
monmap e1: 3 mons at {ceph-node1=10.19.3.128:6789/0, ceph-node2=10.19.3.129:6789/0, ceph-node3=10.19.3.130:6789/0}
election epoch 290, quorum 1,2 ceph-node2, ceph-node3
osdmap e91: 6 osds: 5 up, 5 in
pgmap v29468: 496 pgs, 10 pools, 4947 MB data, 1291 objects
 15061 MB used, 61683 MB / 76744 MB avail
 368 active+clean
 128 stale+active+clean

root@ceph-node1:~#
root@ceph-node1:~# ceph osd tree
ID WEIGHT TYPE NAME UP/DOWN REWEIGHT PRIMARY-AFFINITY
-1 0.05997 root default
-2 0.00999 host ceph-node1
 0 0.00999 osd.0 down 0 1.00000
-3 0.00999 host ceph-node2
 1 0.00999 osd.1 up 1.00000 1.00000

1 mons down, quorum 1,2 ceph-node2, ceph-node3
monmap e1: 3 mons at {ceph-node1=10.19.3.128:6789/0, ceph-node2=10.19.3.129:6789/0, ceph-node3=10.19.3.130:6789/0}
election epoch 290, quorum 1,2 ceph-node2, ceph-node3
osdmap e91: 6 osds: 5 up, 5 in
pgmap v29468: 496 pgs, 10 pools, 4947 MB data, 1291 objects
 15061 MB used, 61683 MB / 76744 MB avail
 368 active+clean
 128 stale+active+clean
Engineer wondered which upgrade source should be used?

- Ubuntu trusty provides only Ceph hammer version.
- Ceph community provides source and prebuilt packages.

Engineer decided following:

- For Jewel upgrade, he will build the Ceph from source code.
- For Luminous upgrade, he will use prebuilt packages which Ceph community provides.
Migration steps

1. Upgrade Ceph Hammer to Jewel on Ubuntu 14.04 (FileStore)
2. Upgrade Ceph Jewel to Luminous on Ubuntu 14.04 (FileStore)
3. Replace the OS and install SES5.5 (FileStore)
4. Configure DeepSea/Salt and openATTIC
5. Convert OSD from FileStore to BlueStore using Salt.
Hammer to Jewel (1)

- In this step, we tried to build Jewel from community latest source code.

1. Clone to Jewel source repository

   ```
   root@ceph-node1:~# git clone --recursive https://github.com/ceph/ceph.git -b jewel
   ```

2. Install additional packages to build ceph

   ```
   root@ceph-node1:~# cd ceph
   root@ceph-node1:~/ceph# ./install-deps.sh
   ```

3. Install packaging tools

   ```
   root@ceph-node1:~/ceph# apt-get install dpkg-dev
   root@ceph-node1:~/ceph# dpkg-checkbuilddeps
   ```
Hammer to Jewel (2)

4. Create packages

```bash
root@ceph-node1:~/ceph# dpkg-buildpackage
root@ceph-node1:~/ceph#
```

As a result, we find packages in parent directory.

```bash
root@ceph-node1:~/ceph# ls /root | grep deb
ceph_10.2.11-1_amd64.deb  ceph-mon_10.2.11-1_amd64.deb
libcephfs-java_10.2.11-1_all.deb  librbd1_10.2.11-1_amd64.deb
python-rados_10.2.11-1_amd64.deb
```
Install Jewel packages on all servers. Here, I described ceph-node2 case as an example.

1. Copy Jewel packages into /root/jewel-deb of ceph-node2

   ```bash
   root@ceph-node2:~# scp -r root@ceph-node1:/root/*deb ./jewel-deb
   ```

2. Install Jewel packages

   ```bash
   root@ceph-node2:~/jewel-deb# dpkg -i --force-overwrite *deb
   root@ceph-node2:~/jewel-deb# apt-get -f install
   ```
3. Restart daemons (Restarting order is mon, osd then rgw)

- Restarting mon daemons on all nodes which mons are running.

 # kill -15 <mon process id>
 # /usr/bin/ceph-mon --id <mon node name> -c /etc/ceph/ceph.conf

- Restarting osd daemons on all nodes which osd resides.

 # kill -15 <osd process id>
 # /usr/bin/ceph-osd --id <osd instance id>

- Restarting rgw service on all nodes which rgw resides.

 # kill -15 <rgw process id>
 # /usr/bin/radosgw -f --cluster ceph --name client.rgw.<rgw node name>
Finishing migration

1. Check the cluster status

```
root@ceph-node1:~# /usr/bin/ceph -s
   cluster 5d4c5d20-a0c5-483e-9648-e8799af940fd
   health HEALTH_WARN
```

In case of migration from Hammer to Jewel, you will see always HEALTH_WARN. Therefore, please perform 3 steps on the next slide.
Hammer to Jewel (6)

2. Finishing tasks

Update legacy tunable parameters to optimal value for Jewel.

```bash
root@ceph-node1:~# /usr/bin/ceph osd crush tunables optimal
adjusted tunables profile to optimal
```

This flag tells mons about end of migration to Jewel.

```bash
root@ceph-node1:~# /usr/bin/ceph osd set require_jewel_osds
set require_jewel_osds
```
Hammer to Jewel (7)

Set the “sortbitwise” flag to enable the new internal object sort order. Enabling “sortbitwise” changes in the internal sorting algorithm. And it is exposed to end-user only because of legacy (pre-jewel) compatibility.

```
root@ceph-node1:~# /usr/bin/ceph osd set sortbitwise
set sortbitwise
```
Hammer to Jewel (8)

3. Check the cluster version

```
root@ceph-node1:~# /usr/bin/ceph -v
ceph version 10.2.11-7-g3b165d0 (3b165d04be802df246f40f9042168897be279929)
```

4. Confirm you can access objects

```
root@ceph-node7:~# s3cmd la
2018-12-07 04:21  5145  s3://bucket_test/file1
2018-12-07 04:27  5145  s3://bucket_test/file2
2018-12-07 04:29  5145  s3://bucket_test/file3
```

Migration from Hammer to Jewel has finished.
Migration steps

1. Upgrade Ceph Hammer to Jewel on Ubuntu 14.04 (FileStore)
2. Upgrade Ceph Jewel to Luminous on Ubuntu 14.04 (FileStore)
3. Replace the OS and install SES5.5 (FileStore)
4. Configure DeepSea/Salt and openATTIC
5. Convert OSD from FileStore to BlueStore using Salt.
Jewel to Luminous (1)

- Download the Luminous packages for Debian on node1. Then distribute them to other nodes. Then install them on all nodes.


```bash
# dpkg -i download.ceph.com/debian-luminous/pool/main/c/ceph/*
```
3. Restart daemons (Restarting order is mon, osd then rgw)

- Restarting mon daemons on all nodes which mons are running.

  ```
  # kill -15 <mon process id>
  # /usr/bin/ceph-mon --id <mon node name> -c /etc/ceph/ceph.conf
  ```

- Restarting osd daemons on all nodes which osd resides.

  ```
  # kill -15 <osd process id>
  # /usr/bin/ceph-osd --id <osd instance id>
  ```

- Restarting rgw service on all nodes which rgw resides.

  ```
  # kill -15 <rgw process id>
  # /usr/bin/radosgw -f --cluster ceph --name client.rgw.<rgw node name>
  ```
In case of migration from Jewel to Luminous, you will see always HEALTH_WARN. Therefore, please perform steps on the next slide.
2. Finishing tasks

This flag tells mons about end of migration to Luminous.

```
root@ceph-node1:~# /usr/bin/ceph osd require-osd-release luminous
recovery_deletes is set
```

Start a MGR daemons on every node MON is running. MGR is newly introduced daemon in Luminous, and it is a mandatory daemon in Luminous or later.

```
# /usr/bin/ceph --cluster ceph auth get-or-create mgr.admin mon 'allow profile mgr' osd 'allow *' mds 'allow *'
# mkdir -p /var/lib/ceph/mgr/ceph-admin/
# /usr/bin/ceph auth get mgr.admin -o /var/lib/ceph/mgr/ceph-admin/keyring
# /usr/bin/ceph-mgr -i admin
```
3. Check the cluster version

```
root@ceph-node1:~# ceph versions

"mon": {
  "ceph version 12.2.10 (177915764b752804194937482a39e95e0ca3de94) luminous (stable)": 3
},
"mgr": {
  "ceph version 12.2.10 (177915764b752804194937482a39e95e0ca3de94) luminous (stable)": 1
},
"osd": {
  "ceph version 12.2.10 (177915764b752804194937482a39e95e0ca3de94) luminous (stable)": 6
},
"mds": {},
"rgw": {
  "ceph version 12.2.10 (177915764b752804194937482a39e95e0ca3de94) luminous (stable)": 2
},
"overall": {
  "ceph version 12.2.10 (177915764b752804194937482a39e95e0ca3de94) luminous (stable)": 12
}
```
Jewel to Luminous (5)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Size</th>
<th>Object Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-12-07 04:21</td>
<td>5145</td>
<td>s3://bucket_test/file1</td>
<td></td>
</tr>
<tr>
<td>2018-12-07 04:27</td>
<td>5145</td>
<td>s3://bucket_test/file2</td>
<td></td>
</tr>
<tr>
<td>2018-12-07 04:29</td>
<td>5145</td>
<td>s3://bucket_test/file3</td>
<td></td>
</tr>
</tbody>
</table>

Migration from Jewel to Luminous has finished.
Migration steps

1. Upgrade Ceph Hammer to Jewel on Ubuntu 14.04 (FileStore)
2. Upgrade Ceph Jewel to Luminous on Ubuntu 14.04 (FileStore)
3. Replace the OS and install SES5.5 (FileStore)
4. Configure DeepSea/Salt and openATTIC
5. Convert OSD from FileStore to BlueStore using Salt.
Replacing Ubuntu with SES (1)

- **Detach**
 - MON+OSD Ubuntu
 - RGW Ubuntu
 - OSD Ubuntu

- **Attach**
 - MON+OSD Ubuntu
 - RGW Ubuntu
 - OSD SuSE

Replacing order:
1) mon+osd
2) osd
3) rgw
Replacing Ubuntu with SES (2)

- **Replacing OS**
 - Backup the Ceph config files (/etc/ceph/*, /var/lib/ceph/*) on another server.
 - Shutdown Ubuntu.
 - Start installation of SLES12 SP3.
 - Install SES5 packages.
 - Restore back-upped Ceph config files. (/etc/ceph/*, /var/lib/ceph/*)
 - Start Ceph daemons

    ```
    # systemctl start ceph.target
    ```
Replacing Ubuntu with SES (3)

Tips

■ Be careful not to use data volumes (OSD volumes) while installing SLES.
 • If you destroy the existing data on OSD volumes, you will need additional time to recover data of OSD volumes from other OSD nodes.

■ Before starting shutdown of every node, check the cluster status is HEALTH_OK with “ceph -s” command.
Migration steps

1. Upgrade Ceph Hammer to Jewel on Ubuntu 14.04 (FileStore)
2. Upgrade Ceph Jewel to Luminous on Ubuntu 14.04 (FileStore)
3. Replace the OS and install SES5.5 (FileStore)
4. Configure DeepSea/Salt and openATTIC
5. Convert OSD from FileStore to BlueStore using Salt.
DeepSea and openATTIC (1)

- **Deploy DeepSea**
 - Add DeepSea/Salt packages on admin node
    ```
    # zypper install deepsea
    ```
 - Execute the DeepSea engulf
 - The engulf processes attempts to convert a non-DeepSea cluster into a DeepSea configured cluster without altering the existing cluster.
      ```
      # salt-run populate.engulf_existing_cluster
      ```
 - Run stage0 through stage4 with DeepSea command.
      ```
      # deepsea stage run ceph.stage.0
      # deepsea stage run ceph.stage.4
      ```
DeepSea and openATTIC (2)

- Stage0 upgrades to latest packages
- Stage1 collects various Ceph configuration information.
- Stage2 creates configuration file for Salt which defines Ceph cluster information.
- Stage3 deploys OSD and Mon daemons
- Stage4 deploys additional daemons like RADOS GW
DeepSea and openATTIC (3)

- openATTIC will be enabled in the process of stage0 through stage4.
- Check whether openATTIC is working or not with browser.
DeepSea and openATTIC (4)

Tips

- DeepSea supports xfs FileStore but not ext4 FileStore. If the old cluster uses non-xfs FileStore, **DeepSea will destroy the data in the OSDs in stage3**. To workaround this you need to comment out the following if statement:

  ```python
  # if osdc.is_partition('osd', config.device, _partition) and _fsck(config.device, _partition):
  ```

- The step of "salt-run populate.engulf_existing_cluster" needs that Ceph services are running under system.
Migration steps

1. Upgrade Ceph Hammer to Jewel on Ubuntu 14.04 (FileStore)
2. Upgrade Ceph Jewel to Luminous on Ubuntu 14.04 (FileStore)
3. Replace the OS and install SES5.5 (FileStore)
4. Configure DeepSea/Salt and openATTIC
5. Convert OSD from FileStore to BlueStore using Salt.
Conversion from FileStore to BlueStore (1)

- SUSE document is good starting point

- Steps

 We need to unlock the safety-lock to use Salt OSD conversion feature.

  ```
  # salt-run disengage.safety
  ```

 Migrate hardware profiles:

  ```
  # salt-run state.orch ceph.migrate.policy
  ```

 To migrate OSDs one at a time, run:

  ```
  # salt-run state.orch ceph.migrate.osds
  ```
Conversion from FileStore to BlueStore (2)

Tips

- You can confirm the conversion result with OSD meta data.

```
# ceph osd metadata 1 | grep objectstore
"osd_objectstore": "bluestore"
```

- Duration of “ceph.migrate.osds” step depends on the amount of data in the OSD. Salt will timeout in 1 hour and command might end with error. But conversion of OSD continues. You can restart the same step after the cluster status become HEALTH_OK.
Migration steps

1. Upgrade Ceph Hammer to Jewel on Ubuntu 14.04 (FileStore)
2. Upgrade Ceph Jewel to Luminous on Ubuntu 14.04 (FileStore)
3. Replace the OS and install SES5.5 (FileStore)
4. Configure DeepSea/Salt and openATTIC
5. Convert OSD from FileStore to BlueStore using Salt.

Migration Finished
Conclusion

- We can migrate the community based Ceph cluster to SES with non-disruptive way.
- We needed (2 months*1 person) to establish this migration procedure.
- When we follow the established procedure, it will take 2 days + X days
 - X depends on amount of existing data. We need further study to estimate this time.
- SES provides very good management tools (DeepSea/Salt) to ease the management of Ceph cluster.

- Please contact FUJITSU if you need help for Ceph migration.
Special Thanks

Kouya Shimura, Shunichi Sagawa, Shingo Iwakura, Yuji Morita and Mikio Ito
FUJITSU

shaping tomorrow with you
Our products and services

Technology Solutions

Services

Solution / SI
- Systems Integration (system construction, business applications)
- Consulting
- Front-end Technologies (ATMs, POS systems etc.)

Infrastructure Services
- Outsourcing services (datacenters, ICT operation/management, SaaS, application operation/management, business process outsourcing, etc.)
- Cloud services (IaaS, PaaS, SaaS, etc.)
- Network services (business networks, distribution of Internet/mobile content)
- System support services (maintenance and surveillance services for information systems and networks)
- Security solutions (installation of information systems and networks)

Systems platform

System Products
- Full Range of Servers (mainframe, UNIX, mission-critical x86 servers and other x86 servers)
- Storage Systems
- Software (operating system, middleware)

Network Products
- Network Management Systems
- Optical Transmission Systems
- Mobile Phone Base Stations
Our products and services

Ubiquitous Product Solutions
- PCs

Device solutions
- LSI Devices
- Semiconductor Packages
- Batteries
- Electromechanical Components (relays, connectors, etc.)
- Optical Transceiver Modules
- Printed Circuit Boards
Revenue by sector – FY2017

<table>
<thead>
<tr>
<th>Sector</th>
<th>Revenue (Billions of yen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Solutions</td>
<td>3,052.7</td>
</tr>
<tr>
<td>Services</td>
<td>2,598.3</td>
</tr>
<tr>
<td>System Platform</td>
<td>454.3</td>
</tr>
<tr>
<td>Ubiquitous Solutions</td>
<td>663.9</td>
</tr>
<tr>
<td>Device Solutions</td>
<td>560.0</td>
</tr>
<tr>
<td>Others</td>
<td>-178.2</td>
</tr>
<tr>
<td>Total</td>
<td>4,098.3</td>
</tr>
</tbody>
</table>

Note: Consolidated Revenue by Business Segment, Including Intersegment Revenue