Deep Dive into the Upgrade of SUSE OpenStack Cloud

Jiří Suchomel
SUSE Cloud Engineer
jiri.suchomel@suse.com
Overview

Upgrade introduction
Non-disruptive, what does it mean?
Upgrading SUSE OpenStack Cloud
Migrating the database
Closer look at interesting cases
Why upgrade?

Get new features and bug fixes

OpenStack release cycle

- New release twice a year
- Distributions usually do not offer every release
- Upgrade needs to skip releases, which was not officially supported

How to upgrade and not limit users of your cloud

- Not to limit *too much*
- Non-disruptive (whatever that really means)
Non-disruptive Upgrade

What is the requirement, exactly?
• What is really beneficial to users
 What is technically possible with the platform

Existing workloads are functional during the whole upgrade
• They are running and accessible
• User cannot create new instances or stop existing ones
• OpenStack services can be down for part of the upgrade
 • But try to minimize the downtime
• Don’t force users to do non-disruptive if they don’t require it
SUSE OpenStack Cloud 6, 7 & 8

Deployed on regular or virtual hardware
- No containers: no help from fancy container management tools

Crowbar: deployment and configuration tool
- Ruby on Rails & Chef
- “Admin Server” runs crowbar and contains all Chef cookbooks

SUSE Linux Enterprise Server (SLES)
- Every node, including Admin Server
- New Service Pack: new kernel, lots of new packages, reboot required
SUSE OpenStack Cloud Versions

SUSE OpenStack Cloud 6
- OpenStack Liberty
- SLES 12 SP1

SUSE OpenStack Cloud 7
- OpenStack Newton
- SLES 12 SP2

SUSE OpenStack Cloud 8
- OpenStack Pike
- SLES 12 SP3
- Crowbar version
Upgrading: Basic Concepts

Highly Available setup
- Pacemaker clusters for services in control plane
- While a control node is being upgraded, API is provided by rest of cluster
- Still some downtime while switching to new versions

nova live-migrate
- Live migrate all running instances from a compute node
- Disable compute service
- Upgrade packages, reboot, reconfigure and start services
- Continue with next node

Sounds simple, right?
Upgrading SUSE OpenStack Cloud

controller controller controller

Pacemaker cluster

API

HA Proxy

compute compute compute

VM VM
First Controller Node Being Upgraded

- **Pacemaker cluster**
- **API: version N**
 - = old nodes

Diagram:
- Three controller nodes:
 - Left: controller
 - Middle: controller
 - Right: controller
- HA Proxy
- Three compute nodes:
 - Left: compute
 - Middle: compute
 - Right: compute
- Two VMs:
 - Left: VM
 - Right: VM

Note: "controller" and "compute" labels are repeated in the diagram.
First Controller Node Fully Upgraded

- API: version N+2
- = upgraded node
- Pacemaker cluster

controller
controller
controller

HA Proxy

compute
compute
compute

VM
VM
Looking More Closely...
Upgrade Architecture

Crowbar (RoR)

Chef

bash scripts

chef-client

Admin server

Cloud nodes
Upgrading in Detail: nova

Control plane is fully upgraded to new OpenStack release

Compute nodes are running old versions of OpenStack
 - Version N compared to N+2 version on control plane

What does it mean for the instances?
 - Still running, still reachable
 - For live-migrations, nova-api and nova-compute must be able to communicate
 - Working fine[*] with Newton-Pike combination, not so well for Liberty-Newton
 - When upgrading SOC6, we upgrade all nova services at all compute nodes
Upgrading in Detail: Does nova really work?

[upgrade_levels]

- All nova services must use the same RPC API
 - `compute=auto`
- Not all operations are affected (e.g., volume attaching is)
- After all nova services are upgraded to the latest version, tell services to start using the latest RPC
 - `systemctl kill -s HUP`
Upgrading in Detail: nova-placement

Nova-placement setup required since Ocata
- Simple upgrading from Newton to Pike would be broken

Somehow included in Newton

Some patches needed to be ported back to Newton

Maintenance update for SUSE OpenStack Cloud 7
- Updates nova set up in Newton version to correctly enable the service
- Requirement before starting the upgrade
Upgrading in Details: Network Connectivity

Instances are running, but are they accessible from the network?

Don’t shut down the control node providing network connectivity to nodes

Evacuation of routers and load balances before the node upgrade
- And back when upgrading the next network node

Some services need to run
- Neutron, keystone, rabbitmq

neutron-ha-tool
Upgrading in Detail: Database Schema

db sync commands
- Migrate the database schema and update the existing database entries
- Executed after the package upgrade
- Only one version of the service should run in the cluster

Cinder online migration introduced in Ocata
- Intended for data migration (as opposed to schema changes)
- Breaks our idea of simple db_sync after skipping release
- Online migration required to be run in Ocata
- db_sync makes sure online migration was executed

Should we install Ocata packages temporarily?
- Official OpenStack position
Upgrading in Detail: Cinder db Migration

Ocata’s online migration moved to Pike version of a package

- cinder-manage db sync 96
- cinder-manage db online_data_migrations
- cinder-manage db sync

Same with nova when upgrading from Liberty to Newton

- However, nova online migrations on Pike (SUSE OpenStack 8) must be run at the end
Upgrading in Detail: Postponed Upgrade

Introduced in SUSE OpenStack Cloud 8

API fully running once control plane is upgraded

Nova services running Pike and Newton can communicate
- Usable cloud, although not fully upgraded
- Beware of collocation of services (e.g., cinder-volume on compute node)
- Nova is using Newton RPC versions

User can even use crowbar to modify the configuration

Upgrade of compute nodes when the right time comes
Upgrading in Detail: Supported Scenarios

Prechecks: make sure the system is healthy and supported
- Pacemaker/Ceph cluster health
- Latest updates
- Services collocation
- Database backend

Do not rely on Admin server!
- Cinder storage
- STONITH
Database Upgrade and Migration
OpenStack Database Engine

SUSE OpenStack Cloud 7: PostgreSQL

SUSE OpenStack Cloud 8: Mariadb
- Mariadb is where upstream is going
- Necessary to provide the upgrade path without data loss
Deployment and Orchestration Challenges

We need to change the DB engine from PostgreSQL to MariaDB

When to migrate the data
- Before the upgrade to Cloud 8? After the upgrade? Coupled with the upgrade?

Where to deploy the MariaDB instance
- Separate node/cluster vs. the same node/cluster as PostgreSQL
- PostgreSQL can be deployed to a 2-node cluster
- MariaDB’s galera cluster needs at least 3 nodes

How to deploy MariaDB alongside PostgreSQL
- Allow users to deploy MariaDB that is configured but not used by OpenStack
How to Migrate: High-Level View

Deploy MariaDB into existing SOC7 setup
Use the existing OpenStack tools to create schema in the target databases (e.g. `keystone-manage db_sync`)
Stop OpenStack services so they do not write to PostgreSQL
Migrate the data
Reconfigure services to use MariaDB
Migrating SQL Data

Issues
- Some OpenStack components have different a schema for different backends
- UTF in MySQL does not support full character set
- Size limit of MySQL’s TEXT

Considered existing tools

Ultimately we had to write our own
- Psql2mysql
- Precheck: check the source DB
- Migrate: needs target DB
- Work on set of databases
Tools
User Interface

Web UI executed from crowbar dashboard

CLI
- crowbarctl upgrade status
- crowbarctl upgrade prechecks
- crowbarctl upgrade nodes

Log and status files to watch
- /var/log/crowbar/admin-server-upgrade.log
- /var/lib/crowbar/upgrade/7-to-8-progress.yml
- /var/log/crowbar/node-upgrade.log
Links

SUSE OpenStack Cloud

Crowbar and friends
- https://crowbar.github.io
- https://github.com/crowbar
- https://github.com/SUSE/psql2mysql
Questions?
Unpublished Work of SUSE LLC. All Rights Reserved.
This work is an unpublished work and contains confidential, proprietary and trade secret information of SUSE LLC. Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope of their assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified, translated, abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE. Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer
This document is not to be construed as a promise by any participating company to develop, deliver, or market a product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. SUSE makes no representations or warranties with respect to the contents of this document, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The development, release, and timing of features or functionality described for SUSE products remains at the sole discretion of SUSE. Further, SUSE reserves the right to revise this document and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in this presentation are trademarks or registered trademarks of SUSE LLC. in the United States and other countries. All third-party trademarks are the property of their respective owners.