Hitachi Unified Compute Platform Select for the SAP HANA Platform in a 2 TB Scale-Up Configuration

Reference Architecture Guide

By Jens-Uwe Dzikowski, Koji Saito

July 3, 2013
Feedback

Hitachi Data Systems welcomes your feedback. Please share your thoughts by sending an email message to SolutionLab@hds.com. To assist the routing of this message, use the paper number in the subject and the title of this white paper in the text.
Table of Contents

Solution Overview ... 2

Key Solution Elements ... 4
 - Hardware Elements ... 4
 - Software Elements ... 6

Solution Design ... 8
 - Hitachi Compute Blade 2000 Chassis Configuration 8
 - Hitachi Compute Blade 2000 Server Architecture 10
 - Direct Connect Fibre Channel Architecture .. 11
 - Network Architecture ... 13
 - Storage Architecture ... 15
 - SAP HANA Configuration ... 18
Hitachi Unified Compute Platform Select for the SAP HANA Platform in a 2 TB Scale-Up Configuration

Reference Architecture Guide

Hitachi Unified Compute Platform Select for the SAP HANA platform in a 2 TB scale-up configuration is a pre-configured analytical appliance ready to plug into a network to provide real-time access to operational data for use in analytic models. The 2 TB refers to the amount of memory used in this reference architecture.

This reference architecture guide describes the planning, design, and best practices to deploy the 2 TB scale-up configuration of Unified Compute Platform Select for the SAP HANA platform using the following:

- Hitachi Compute Blade 2000 server
- Hitachi Unified Storage 130 storage system
- SAP High-Performance Analytic Appliance (HANA) software
- Fusion-io ioDrive2 storage devices

This technical paper assumes familiarity with the following:

- Storage area network (SAN)-based storage systems
- General storage concepts
- SAP HANA
- Common IT storage practices

Note — Testing of this configuration was in a lab environment. Many things affect production environments beyond prediction or duplication in a lab environment. Follow the recommended practice of conducting proof-of-concept testing for acceptable results in a non-production, isolated test environment that otherwise matches your production environment before your production implementation of this solution.
Solution Overview

This reference architecture guide for the 2 TB scale-up configuration of Hitachi Unified Compute Platform Select for the SAP HANA platform uses the following:

- **Hitachi Compute Blade 2000** — An enterprise-class server platform. This solution uses four X57A2 server blades.

- **Hitachi Unified Storage 130** — A midrange storage solution. The persistent storage (data volume) of the SAP HANA server resides on this storage device.

- **SAP High-Performance Analytic Appliance (HANA)** — A multi-purpose, in-memory appliance to analyze transactional and analytical data.

- **Fusion-io ioDrive2** — An enterprise solid-state flash storage device. This solution uses two or four 1.2 TB MLC ioDrive2 storage devices. This acts as the low latency storage for the SAP HANA server log volume.

- **Emulex Fibre Channel Host Bus Adapters** — Provides SAN connectivity to the data center network.

Figure 1 on page 3 shows the topology of this reference architecture.
Figure 1
Key Solution Elements

These are the key hardware and software components used the 2 TB scale-up configuration of Hitachi Unified Compute Platform Select for the SAP HANA platform.

Hardware Elements

Table 1 describes the major hardware elements used for this solution.

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Quantity</th>
<th>Configuration</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hitachi Compute Blade 2000 chassis</td>
<td>1</td>
<td>8-blade chassis</td>
<td>Server blade chassis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Management modules</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 Cooling fan modules</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Power supply modules</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 × 1 Gb/sec pass-through modules</td>
<td></td>
</tr>
<tr>
<td>Hitachi Compute Blade 2000 X57A2 server blade</td>
<td>4</td>
<td>2 × 10 core processors</td>
<td>SAP HANA server</td>
</tr>
<tr>
<td></td>
<td></td>
<td>512 GB memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Ethernet mezzanine card in these slots:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Slot 0 of Blade 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Slot 0 of Blade 1</td>
<td></td>
</tr>
<tr>
<td>SMP connector module</td>
<td>1</td>
<td>4-blade SMP connector board</td>
<td>SMP connector</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMP expansion module</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMP connector cover</td>
<td></td>
</tr>
<tr>
<td>Hitachi Unified Storage 130</td>
<td>1</td>
<td>8 × 8 Gb/sec Fibre Channel ports</td>
<td>Primary storage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 GB cache memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>43 × 300 GB 10k RPM SAS drives</td>
<td></td>
</tr>
<tr>
<td>Fusion-io ioDrive2 storage device</td>
<td>2 or 4</td>
<td>1.2 TB MLC flash memory platform</td>
<td>HANA log volumes</td>
</tr>
<tr>
<td>Emulex HBA</td>
<td>2</td>
<td>8 Gb/sec dual-port Fibre Channel HBA</td>
<td>Host bus adapters</td>
</tr>
<tr>
<td>NIC</td>
<td>1</td>
<td>10 Gb Ethernet PCIe card</td>
<td>Optional for 10 Gb connectivity</td>
</tr>
</tbody>
</table>
Hitachi Compute Blade 2000

Hitachi Compute Blade 2000 is an enterprise-class blade server platform. It features the following:

- A balanced system architecture that eliminates bottlenecks in performance and throughput
- Configuration flexibility
- Sustainable power-saving capabilities
- Fast server failure recovery using a N+1 cold standby design that allows replacing failed servers within minutes

This solution uses a four-blade SMP connection interface to connect four X57A2 server blades. This combination acts as a single HANA server node for the large size configuration with the following:

- 8 CPUs
- 80 cores
- 2048 GB of RAM

Table 2 has the specifications for each X57A2 server blade.

Table 2. X57A2 Server Blade Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processors</td>
<td>Intel Xeon 8800 series processors</td>
</tr>
<tr>
<td></td>
<td>2 processors per server blade</td>
</tr>
<tr>
<td>Processor SKU</td>
<td>Westmere E7-8870</td>
</tr>
<tr>
<td>Processor Frequency</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>Processor cores</td>
<td>10 cores</td>
</tr>
<tr>
<td>Memory DIMM slots</td>
<td>32</td>
</tr>
<tr>
<td>Memory</td>
<td>512 GB with 16 GB DIMMS</td>
</tr>
<tr>
<td>Network ports</td>
<td>2 × 1Gb Ethernet (SERDES)</td>
</tr>
<tr>
<td>Mezzanine slots I/O expansion slots</td>
<td>2</td>
</tr>
<tr>
<td>Other interfaces</td>
<td>2 USB 2.0 port</td>
</tr>
<tr>
<td></td>
<td>1 Serial port</td>
</tr>
</tbody>
</table>
Fusion-io ioDrive2 Storage Device
This solution uses 1.2 TB Fusion-io ioDrive2 storage devices for the SAP HANA log volumes. In the basic version, there are two devices aggregated in RAID-0 mode for capacity. The version with four devices offers extra protection by combining the devices using RAID-10.

The ioDrive2 storage devices improve application response times with a persistent, high-performance, high-capacity memory tier.

Software Elements
Table 3 lists the major software elements used for this solution.

<table>
<thead>
<tr>
<th>Software</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hitachi Storage Navigator Modular 2</td>
<td>Microcode dependent</td>
</tr>
<tr>
<td>SAP HANA</td>
<td>1.0 SP05</td>
</tr>
<tr>
<td>SUSE Linux Enterprise Server for SAP Applications</td>
<td>11 SP2</td>
</tr>
</tbody>
</table>

SAP High Performance Analytic Appliance (HANA)
The SAP High Performance Analytic Appliance (HANA) platform is flexible, multipurpose in-memory software. It combines SAP software components optimized to specific hardware. The use of the SAP HANA appliance does not depend on the data source.

The SAP HANA appliance enables the real-time analysis of huge volumes of detailed business information from almost any data source. It captures operational data in memory as it occurs. Flexible views quickly expose analytic information. External data can be added to analytic models from across an entire organization.

This hardware and software combination integrates a number of SAP components, including the following:

- **SAP In-Memory Database** — This hybrid in-memory database combines row-based, column-based, and object-based database technology. It takes advantage of parallel processing capabilities of multi-core CPU architectures
- **SAP LT (Landscape Transformation)** — This replicates source system data to the SAP HANA appliance.
SAP customers may download more information on the SAP HANA platform at the [SAP Service Marketplace](https://service.sap.com). See [Installation and Upgrade Guides](https://service.sap.com) for SAP In-Memory Computing (SAP In-Memory Appliance — SAP HANA) to download information. The following are available:

- **SAP HANA Master Guide** — This is the central starting point for the technical implementation of the SAP HANA platform. Use this to for basic concepts and for planning the SAP HANA application system landscape.

- **SAP HANA Installation and Initial Configuration Guides** — Use the various installation guides to install the required SAP In-Memory Database and the other software components for the different replication technologies. Refer to the [SAP HANA Overall Installation Guide](https://service.sap.com) for an overview on how to install SAP HANA.

- **SAP HANA Operational Concept** — Attached to SAP Note 1599888, this explains the appliance software concept.

- **SAP HANA Technical Operations Manual** — This is a picture of the available administration tools with SAP HANA appliance and the key tasks for a system administrator.

- **SAP HANA Update Guide** — This explains how to update SAP HANA and its components.

- **SAP HANA Product Availability Matrix** — This provides information about SAP HANA-supported software and hardware platforms. Search for "HANA" on this page.

SUSE Linux Enterprise Server (SLES) for SAP Applications

Hitachi Unified Compute Platform Select for the SAP HANA platform in a scale-up configuration runs on a 64-bit version of SUSE Linux Enterprise Server (SLES) for SAP Applications 11 SP2.

Only use the delivered operating system configuration for your appliance. Changing the configuration settings can cause significant performance problems to occur.

Do not modify the operating system, except as SAP approves. SAP must validate and approve any updates related to the kernel or runtime libraries (`glibc`). Wait for all operating system patches until officially released by SAP HANA.

For more details, see Section 2.5.1, "Updating and Patching the Operating System," in [SAP HANA Technical Operations Manual](https://service.sap.com).
Solution Design

The detailed design for this 2 TB scale up configuration of the large Hitachi Unified Compute Platform Select for the SAP HANA platform reference architecture includes the following:

- “Hitachi Compute Blade 2000 Chassis Configuration,” starting on page 9
- “Hitachi Compute Blade 2000 Server Architecture,” starting on page 11
- “Direct Connect Fibre Channel Architecture,” starting on page 12
- “Network Architecture,” starting on page 14
- “Storage Architecture,” starting on page 17
- “SAP HANA Configuration,” starting on page 20

Hitachi Compute Blade 2000 Chassis Configuration

Figure 2 on page 9 shows the front and back view of Hitachi Compute Blade 2000 used in the 2 TB scale-up configuration of Hitachi Unified Compute Platform Select for the SAP HANA platform.
4 x CB2000 X57A2 Blade
SMP Connected

Hitachi Compute Blade 2000
(Front)

2 x 1Gb LAN Pass-through Module

2 x 1Gb LAN Pass-through Module

Two or four
1.2 TB MLC Fusion-io ioDrive2
Storage Devices

Emulex 8 Gb/sec Fibre Channel
Host Bus Adapter

Hitachi Compute Blade 2000
(Back)

Figure 2
There are two PCIe slots available on each server blade.

- Use the right PCIe slot of each server blade for a 1.2 TB Fusion-io ioDrive2 storage device.
 - For the basic version, only use the slots of Blade 0 and Blade 1.
 - For the protected version, use the slots of all four server blades.
- Use the left PCIe slot of Blade 0 and Blade 1 for one Emulex 8 Gb/sec 2-port host bus adapter.

Do not change the position of the 1.2 TB Fusion-io ioDrive2 storage device and the Emulex 8 Gb/sec dual-port host bus adapter on the PCIe slot. A position change affects the performance and boot sequence.

Optionally, the left PCIe slot of Blade 2 can have one 10 Gb Ethernet PCIe card.

Hitachi Compute Blade 2000 Server Architecture

The 2 TB scale up configuration of the Hitachi Unified Compute Platform Select for the SAP HANA platform reference architecture uses four Hitachi Compute Blade 2000 X57A2 server blades connected using the four-blade SMP interface connector. This creates a single eight-socket SMP system with 80 cores and 2048 GB of memory. With the SMP configuration, the following is true:

- Blade 0 is the primary server blade.
- Blade 1, Blade 2, and Blade 3 are the non-primary server blades.

Table 4 lists the server blade configuration.

<table>
<thead>
<tr>
<th>Server Blades</th>
<th>Four Blade SMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blade 0 (primary)</td>
</tr>
<tr>
<td></td>
<td>Blade 1 (non-primary)</td>
</tr>
<tr>
<td></td>
<td>Blade 2 (non-primary)</td>
</tr>
<tr>
<td></td>
<td>Blade 3 (non-primary)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Server Name</th>
<th>SAPHANAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role</td>
<td>SAP HANA server with 2 TB of memory</td>
</tr>
<tr>
<td>Number of CPU Cores</td>
<td>80</td>
</tr>
<tr>
<td>Memory (GB)</td>
<td>2048</td>
</tr>
</tbody>
</table>
Direct Connect Fibre Channel Architecture

The direct connect Fibre Channel architecture for the 2 TB scale-up configuration of Hitachi Unified Compute Platform Select for the SAP HANA platform has one Emulex Fibre Channel host bus adapter on each of the following for a direct connection to Hitachi Unified Storage 130.

- Left PCIe slot of Blade 0 (primary server blade)
- Left PCIe slot of Blade 1

This direct-attached storage configuration provides better performance with the direct connection of Hitachi Unified Storage 130 and the server blades, as compared with a Fibre Channel switch connection. Not using a connection through Fibre Channel switches reduces latency.

This solution used Storage Port 0A, Storage Port 1A, Storage Port 0B, and Storage Port 1B on Hitachi Unified Storage 130.

- Port 0A and Port 1A connect to the Emulex Fibre Channel host bus adapter in the left PCIe slot of Server Blade 0 (primary server blade). The Emulex Fibre Channel host bus adapter in the left PCIe slot of the Server Blade 0 connects to the following:
 - Port 0A connects to the top port
 - Port 1A connects to the bottom port
- Port 0B and Port 1B connect to the Emulex Fibre Channel host bus adapter in the left PCIe slot of Server Blade 1. The Emulex Fibre Channel host bus adapter in the left PCIe slot of Server Blade 1 connects to the following:
 - Port 0B connects to the top port
 - Port 1B connects to the bottom port

This configuration supports high availability by providing multiple paths from the hosts within Hitachi Compute Blade 2000 to multiple ports on Hitachi Unified Storage 130. In case of an Emulex HBA card failure, this redundancy gives the SAP HANA server two additional paths to Hitachi Unified Storage 130.

For the direct connection between Hitachi Compute Blade 2000 and Hitachi Unified Storage 130, set the Hitachi Unified Storage 130 Fibre Channel ports to loop topology.

Figure 3 on page 12 shows the direct connect Fibre Channel architecture.
Figure 3
Network Architecture

Hitachi Compute Blade 2000 uses the network architecture for the 2 TB scale-up configuration of Hitachi Unified Compute Platform Select for the SAP HANA platform found in Table 5 (standard configuration) and Table 6 (optional configuration).

Table 5. Hitachi Compute Blade 2000 Network Hardware — Standard Configuration

<table>
<thead>
<tr>
<th>NICs per Server Blade</th>
<th>2 onboard Intel 82576 gigabit Ethernet ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mezzanine Slot 0 (Blade 0 and Blade1)</td>
<td>1 Ethernet mezzanine card</td>
</tr>
<tr>
<td></td>
<td>4 × 1 Gb/sec ports</td>
</tr>
<tr>
<td>Switch Bay 0</td>
<td>1 Gb LAN pass-through module</td>
</tr>
<tr>
<td></td>
<td>16 × 1 Gb/sec ports</td>
</tr>
<tr>
<td>Switch Bay 1</td>
<td>1 Gb LAN pass-through module</td>
</tr>
<tr>
<td></td>
<td>16 × 1 Gb/sec ports</td>
</tr>
<tr>
<td>Switch Bay 2</td>
<td>1 Gb LAN pass-through module</td>
</tr>
<tr>
<td></td>
<td>16 × 1 Gb/sec ports</td>
</tr>
<tr>
<td>Switch Bay 3</td>
<td>1 Gb LAN pass-through module</td>
</tr>
<tr>
<td></td>
<td>16 × 1 Gb/sec ports</td>
</tr>
</tbody>
</table>

Table 6. Hitachi Compute Blade 2000 Network Hardware — Optional Configuration

<table>
<thead>
<tr>
<th>NICs per Server Blade</th>
<th>2 onboard Intel 82576 gigabit Ethernet ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mezzanine Slot 0 (Blade 0 and Blade1)</td>
<td>1 Ethernet mezzanine card</td>
</tr>
<tr>
<td></td>
<td>4 × 1 Gb/sec ports</td>
</tr>
<tr>
<td>Left PCIe Slot (Blade 2)</td>
<td>1 × 10 Gb Ethernet PCIe card</td>
</tr>
<tr>
<td>Switch Bay 0</td>
<td>1 Gb LAN pass-through module</td>
</tr>
<tr>
<td></td>
<td>16 × 1 Gb/sec ports</td>
</tr>
<tr>
<td>Switch Bay 1</td>
<td>1 Gb LAN pass-through module</td>
</tr>
<tr>
<td></td>
<td>16 × 1 Gb/sec ports</td>
</tr>
<tr>
<td>Switch Bay 2</td>
<td>1 Gb LAN pass-through module</td>
</tr>
<tr>
<td></td>
<td>16 × 1 Gb/sec ports</td>
</tr>
<tr>
<td>Switch Bay 3</td>
<td>1 Gb LAN pass-through module</td>
</tr>
<tr>
<td></td>
<td>16 × 1 Gb/sec ports</td>
</tr>
</tbody>
</table>
This reference architecture uses two on-board NICs. Each NIC connects through the mid-plane of the chassis to the internal ports of the pass-through module in Switch Bay 0 and Switch Bay 1.

There is one four-port 1 Gb LAN mezzanine card on the following:

- Slot 0 of Blade 0
- Slot 0 of Blade 1

Optionally, the left PCIe slot of Blade 2 can have one 10 Gb Ethernet PCIe card.

There are 1 Gb/sec pass-through modules installed in the following on the Hitachi Compute Blade 2000 chassis:

- Switch Bay 0
- Switch Bay 1
- Switch Bay 2
- Switch Bay 3

For redundancy, the Hitachi Compute Blade 2000 chassis has two management modules. Each module supports an independent management LAN interface from the data network for remote and secure management of the chassis and all server blades.

Each module supports a command line interface and a web interface. It also supports SNMP and email alerts. Each module is hot swappable and supports live firmware updates without the need for shutting down the blades.

Figure 4 on page 15 shows the standard network configuration used for the Hitachi Compute Blade 2000 chassis.
Many factors drive the sizing and configuring of storage used in the 2 TB scale-up configuration of Hitachi Unified Compute Platform Select for the SAP HANA platform reference architecture. This includes I/O and capacity requirements. The following describe how the storage sizing for this reference architecture was determined:

- “RAID Configuration” on page 17
- “LUN Configuration,” starting on page 17
- “Storage Requirements” on page 18
Figure 5 shows the disk configuration of the storage subsystem.
RAID Configuration

This reference architecture uses the following RAID configuration on Hitachi Unified Storage 130.

- One RAID-6 (9D+2P) group created using 11 × 300 GB SAS 10k RPM drives
- Six RAID-5 (4D+1P) groups created using 30 × 300 GB SAS 10k RPM drives
- Two 300 GB SAS drives as spare drives

Table 7 has the configuration for each RAID group.

<table>
<thead>
<tr>
<th>RAID Group</th>
<th>RAID Level</th>
<th>Number of Drives</th>
<th>Drive Size</th>
<th>Drive Speed</th>
<th>Usable Total Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>RAID-6 (9D+2P)</td>
<td>11</td>
<td>300 GB</td>
<td>10k RPM</td>
<td>2.4 TB</td>
</tr>
<tr>
<td>001</td>
<td>RAID-5 (4D+1P)</td>
<td>5</td>
<td>300 GB</td>
<td>10k RPM</td>
<td>1 TB</td>
</tr>
<tr>
<td>002</td>
<td>RAID-5 (4D+1P)</td>
<td>5</td>
<td>300 GB</td>
<td>10k RPM</td>
<td>1 TB</td>
</tr>
<tr>
<td>003</td>
<td>RAID-5 (4D+1P)</td>
<td>5</td>
<td>300 GB</td>
<td>10k RPM</td>
<td>1 TB</td>
</tr>
<tr>
<td>004</td>
<td>RAID-5 (4D+1P)</td>
<td>5</td>
<td>300 GB</td>
<td>10k RPM</td>
<td>1 TB</td>
</tr>
<tr>
<td>005</td>
<td>RAID-5 (4D+1P)</td>
<td>5</td>
<td>300 GB</td>
<td>10k RPM</td>
<td>1 TB</td>
</tr>
</tbody>
</table>

LUN Configuration

This reference architecture contains the following:

- One 75 GB boot LUN to host the SAP HANA server operating system
- One 80 GB LUN to host the SAP HANA appliance software
- One 2.2 TB LUN to host the SAP hanamnt directory
- Six LUNs with capacity of 1.1 TB each to host the SAP HANA data volumes to store the SAP HANA application data

Table 8 shows the LUN allocation for each RAID group.

<table>
<thead>
<tr>
<th>LUN</th>
<th>LUN Size</th>
<th>RAID Group</th>
<th>LUN Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>75 GB</td>
<td>000</td>
<td>SAP HANA Boot LUN</td>
</tr>
<tr>
<td>001</td>
<td>80 GB</td>
<td>000</td>
<td>SAP HANA Installation LUN</td>
</tr>
<tr>
<td>002</td>
<td>2.2 TB</td>
<td>000</td>
<td>SAP HANA mount directory</td>
</tr>
<tr>
<td>003</td>
<td>1.1 TB</td>
<td>001</td>
<td>SAP HANA Data Volume</td>
</tr>
<tr>
<td>004</td>
<td>1.1 TB</td>
<td>002</td>
<td>SAP HANA Data Volume</td>
</tr>
<tr>
<td>005</td>
<td>1.1 TB</td>
<td>003</td>
<td>SAP HANA Data Volume</td>
</tr>
</tbody>
</table>
To support high availability, each LUN has four paths from the host within Hitachi Compute Blade 2000 connected to multiple ports on Hitachi Unified Storage 130. Assign each LUN to the following on Hitachi Unified Storage 130:

- Storage Port 0A
- Storage Port 1A
- Storage Port 0B
- Storage Port1B

Storage Requirements

The total usable capacity for this appliance is 6.6 TB. The minimum requirement set by SAP is to have 3 times the amount of memory of the data volumes. For this solution, that is 3 times 2048 GB, or 6 TB.

The SAP HANA log volume capacity for this appliance is the two (RAID-0) or four (RAID-10) 1.2 TB Fusion-io ioDrive2 storage devices. The minimum requirement set by SAP is to have capacity equal to the amount of main memory. This is 2048 GB.

SAP HANA Configuration

This is the set-up of SAP HANA in the 2 TB scale-up configuration of Hitachi Unified Compute Platform Select for the SAP HANA platform reference architecture.

SAN OS Boot Configuration

This four server blade configuration requires SAN boot. It uses one 75 GB LUN on Hitachi Unified Storage 130 for the operating system boot volume. Mapping for the boot volume is to the following:

- Storage Port 0A
- Storage Port 1A
- Storage Port 0B
- Storage Port1B

The Emulex BIOS setting for all four ports has the 75 GB SAP HANA boot LUN configured as the primary boot device. The installation of SUSE Linux for SAP Applications 11 SP2 is on the boot LUN.
Activate Device-Mapper Multipath

This reference architecture uses Device-mapper Multipath, a component of the native Linux operating system.

Using Device-mapper Multipath allows the configuration of multiple I/O paths between the server blades and Hitachi Unified Storage 130. Multipathing aggregates all physical I/O paths into a single logical path. The LUN is always available unless all four paths fail.

Device-mapper Multipath is used for the following I/O paths:

- SAP HANA server boot LUN
- SAP HANA data volume LUN
- SAP HANA installation LUN
- SAP HANA mount directory LUN

HANA Data Volume Configuration

Logical Volume Manager for the Linux operating system configures the SAP HANA persistent storage volumes. With the six 1 TB SAP HANA data volume LUNs, Logical Volume Manager creates a single 6-way striped volume with a 1 MB stripe size to store the SAP HANA data volume. The striped volume acts as the persistent storage for the SAP HANA server.

HANA Log Volumes Configuration

This reference architecture uses XFS to configure the log volumes using two or four 1.2 TB Fusion-io ioDrive2 storage devices.

After completing the Fusion-io ioDrive2 hardware installation on the PCIe slots of the server blade hosting SAP HANA, install the Fusion-io driver software. This includes the installation of the following:

- Fusion-io ioDrive2 driver RPMs
- Fusion-io ioDrive2 utility RPMs
- Fusion-io ioDrive2 ioMemory VSL facility driver

The driver for the Fusion-io ioDrive2 is built specifically for the installed SUSE operating system kernel version, using the iomemory-vsl source rpm packages.

After the configuration of the Fusion-io drives, use the `mdadm` command to create a single striped RAID array with a chunk size of 64 KB using all Fusion-io ioDrive2 storage devices.

- For the basic model, create a RAID-0 stripe over two cards.
- For the protected model, create a RAID-10 stripe over four cards.

Using RAID-0 or RAID-10 to stripe two or more ioDrive2 storage devices provides added performance during parallel read/writes in Linux.
Format the HANA log volume with the XFS journaling file system. Mount this log volume with the \texttt{–o nobarrier} option to provide better performance with XFS.

Tune the Linux I/O scheduler queue size for all Fusion-io ioDrive2 storage devices. The \texttt{nr_requests} parameter configuration is set to 256.

SAP HANA Installation and Mount Directory

This reference architecture uses the following:

- One 80 GB LUN for SAP HANA installation
- One 2.2 TB LUN for SAP mount directory

Use the XFS file system on these LUNs.

SAP HANA Appliance Software Installation

After configuring the file system for the SAP HANA data volume and log volume, load the latest version of SAP HANA 1.0 SP05 on the SAP HANA server.

Install the following SAP HANA software components on the SAP HANA server node:

- SAP HANA database
- SAP HANA client
- SAP Host Agent
- LM structure
- SAPCAR
- SAP JVM
- SUM for SAP HANA
For More Information

Hitachi Data Systems Global Services offers experienced storage consultants, proven methodologies and a comprehensive services portfolio to assist you in implementing Hitachi products and solutions in your environment. For more information, see the Hitachi Data Systems Global Services website.

Live and recorded product demonstrations are available for many Hitachi products. To schedule a live demonstration, contact a sales representative. To view a recorded demonstration, see the Hitachi Data Systems Corporate Resources website. Click the Product Demos tab for a list of available recorded demonstrations.

Hitachi Data Systems Academy provides best-in-class training on Hitachi products, technology, solutions and certifications. Hitachi Data Systems Academy delivers on-demand web-based training (WBT), classroom-based instructor-led training (ILT) and virtual instructor-led training (vILT) courses. For more information, see the Hitachi Data Systems Services Education website.

For more information about Hitachi products and services, contact your sales representative or channel partner or visit the Hitachi Data Systems website.