11.1 Booting with GRUB

GRUB comprises two stages. Stage 1 consists of 512 bytes and its only task is to load the second stage of the boot loader. Subsequently, stage 2 is loaded. This stage contains the main part of the boot loader.

In some configurations, an intermediate stage 1.5 can be used, which locates and loads stage 2 from an appropriate file system. If possible, this method is chosen by default on installation or when initially setting up GRUB with YaST.

Stage 2 is able to access many file systems. Currently, ext2, ext3, ReiserFS, Minix, and the DOS FAT file system used by Windows are supported. To a certain extent, XFS, and UFS and FFS used by BSD systems are also supported. Since version 0.95 GRUB is also able to boot from a CD or DVD containing an ISO 9660 standard file system pursuant to the El Torito specification. Even before the system is booted, GRUB can access file systems of supported BIOS disk devices (floppy disks or hard disks, CD drives and DVD drives detected by the BIOS). Therefore, changes to the GRUB configuration file (menu.lst) do not require a new installation of the boot manager. When the system is booted, GRUB reloads the menu file with the valid paths and partition data of the kernel or the initial RAM disk (initrd) and locates these files.

The actual configuration of GRUB is based on four files that are described below:


This file contains all information about partitions or operating systems that can be booted with GRUB. Without this information, the GRUB command line prompts the user for how to proceed (see Editing Menu Entries during the Boot Procedure for details).


This file translates device names from the GRUB and BIOS notation to Linux device names.


This file contains the commands, parameters and options the GRUB shell needs for installing the boot loader correctly.


This file is read by the perl-bootloader library which is used when configuring the boot loader with YaST and every time a new Kernel is installed. It contains configuration options (such as Kernel parameters) that will be used as fallback.

Usually all parameters are taken from the generic boot loader configuration file. Only if that does not work, for example when changing the Kernel flavour, the settings from /etc/sysconfig/boot loader will take effect.

So, changing settings in /etc/ (either manually or with the YaST sysconfig editor) will not affect the actual boot loader configuration. On the other hand, changing the actual bootloader configuration file may not survive a change of the kernel flavour.

GRUB can be controlled in various ways. Boot entries from an existing configuration can be selected from the graphical menu (splash screen). The configuration is loaded from the file menu.lst.

In GRUB, all boot parameters can be changed prior to booting. For example, errors made when editing the menu file can be corrected in this way. Boot commands can also be entered interactively at a kind of input prompt. For details, see Editing Menu Entries during the Boot Procedure. GRUB offers the possibility of determining the location of the kernel and the initrd prior to booting. In this way, you can even boot an installed operating system for which no entry exists in the boot loader configuration.

GRUB actually exists in two versions: as a boot loader and as a normal Linux program in /usr/sbin/grub. The latter is referred to as the GRUB shell. It provides an emulation of GRUB in the installed system and can be used to install GRUB or test new settings before applying them. The functionality to install GRUB as the boot loader on a hard disk or floppy disk is integrated in GRUB in the form of the command setup. This is available in the GRUB shell when Linux is loaded.

11.1.1 The File /boot/grub/menu.lst

The graphical splash screen with the boot menu is based on the GRUB configuration file /boot/grub/menu.lst, which contains all information about all partitions or operating systems that can be booted by the menu.

Every time the system is booted, GRUB loads the menu file from the file system. For this reason, GRUB does not need to be reinstalled after every change to the file. Use the YaST boot loader to modify the GRUB configuration as described in Section 11.2, Configuring the Boot Loader with YaST.

The menu file contains commands. The syntax is very simple. Every line contains a command followed by optional parameters separated by spaces like in the shell. For historical reasons, some commands permit an = in front of the first parameter. Comments are introduced by a hash (#).

To identify the menu items in the menu overview, set a title for every entry. The text (including any spaces) following the keyword title is displayed as a selectable option in the menu. All commands up to the next title are executed when this menu item is selected.

The simplest case is the redirection to boot loaders of other operating systems. The command is chainloader and the argument is usually the boot block of another partition, in GRUB block notation. For example:

chainloader (hd0,3)+1

The device names in GRUB are explained in Naming Conventions for Hard Disks and Partitions. This example specifies the first block of the fourth partition of the first hard disk.

Use the command kernel to specify a kernel image. The first argument is the path to the kernel image in a partition. The other arguments are passed to the kernel on its command line.

If the kernel does not have built-in drivers for access to the root partition or a recent Linux system with advanced hotplug features is used, initrd must be specified with a separate GRUB command whose only argument is the path to the initrd file. Because the loading address of the initrd is written into the loaded kernel image, the command initrd must follow after the kernel command.

The command root simplifies the specification of kernel and initrd files. The only argument of root is a device or a partition. This device is used for all kernel, initrd, or other file paths for which no device is explicitly specified until the next root command.

The boot command is implied at the end of every menu entry, so it does not need to be written into the menu file. However, if you use GRUB interactively for booting, you must enter the boot command at the end. The command itself has no arguments. It merely boots the loaded kernel image or the specified chain loader.

After writing all menu entries, define one of them as the default entry. Otherwise, the first one (entry 0) is used. You can also specify a time-out in seconds after which the default entry should boot. timeout and default usually precede the menu entries. An example file is described in An Example Menu File.

Naming Conventions for Hard Disks and Partitions

The naming convention GRUB uses for hard disks and partitions differ from that used for normal Linux devices. It more closely resembles the simple disk enumeration the BIOS does and the syntax is similar to that used in some BSD derivatives. In GRUB, the numbering of the partitions start with zero. This means that (hd0,0) is the first partition of the first hard disk. On a common desktop machine with a hard disk connected as primary master, the corresponding Linux device name is /dev/sda1.

The four possible primary partitions are assigned the partition numbers 0 to 3. The logical partitions are numbered from 4:

(hd0,0)   first primary partition of the first hard disk
(hd0,1)   second primary partition
(hd0,2)   third primary partition
(hd0,3)   fourth primary partition (usually an extended partition)
(hd0,4)   first logical partition
(hd0,5)   second logical partition

Being dependent on BIOS devices, GRUB does not distinguish between PATA (IDE), SATA, SCSI, and hardware RAID devices. All hard disks recognized by the BIOS or other controllers are numbered according to the boot sequence preset in the BIOS.

Unfortunately, it is often not possible to map the Linux device names to BIOS device names exactly. It generates this mapping with the help of an algorithm and saves it to the file device.map, which can be edited if necessary. Information about the file device.map is available in Section 11.1.2, The File device.map.

A complete GRUB path consists of a device name written in parentheses and the path to the file in the file system in the specified partition. The path begins with a slash. For example, the bootable kernel could be specified as follows on a system with a single PATA (IDE) hard disk containing Linux in its first partition:


An Example Menu File

The following example shows the structure of a GRUB menu file. The example installation has a Linux boot partition under /dev/sda5, a root partition under /dev/sda7 and a Windows installation under /dev/sda1.

gfxmenu (hd0,4)/boot/message
color white/blue black/light-gray
default 0
timeout 8

title linux
   root (hd0,4)
   kernel /boot/vmlinuz root=/dev/sda7 vga=791 resume=/dev/sda9
   initrd /boot/initrd

title windows
   rootnoverify (hd0,0)
   chainloader +1

title floppy
   rootnoverify (hd0,0)
   chainloader (fd0)+1

title failsafe
   root (hd0,4)
   kernel /boot/vmlinuz.shipped root=/dev/sda7 ide=nodma \
   apm=off acpi=off vga=normal nosmp maxcpus=0 3 noresume
   initrd /boot/initrd.shipped

The first block defines the configuration of the splash screen:

The background image message is located in the /boot directory of the /dev/sda5 partition.

Color scheme: white (foreground), blue (background), black (selection) and light gray (background of the selection). The color scheme has no effect on the splash screen, only on the customizable GRUB menu that you can access by exiting the splash screen with Esc.

The first (0) menu entry title linux is booted by default.

After eight seconds without any user input, GRUB automatically boots the default entry. To deactivate automatic boot, delete the timeout line. If you set timeout 0, GRUB boots the default entry immediately.

The second and largest block lists the various bootable operating systems. The sections for the individual operating systems are introduced by title.

The first entry (title linux) is responsible for booting SUSE Linux Enterprise Server. The kernel (vmlinuz) is located in the first logical partition (the boot partition) of the first hard disk. Kernel parameters, such as the root partition and VGA mode, are appended here. The root partition is specified according to the Linux naming convention (/dev/sda7/) because this information is read by the kernel and has nothing to do with GRUB. The initrd is also located in the first logical partition of the first hard disk.

The second entry is responsible for loading Windows. Windows is booted from the first partition of the first hard disk (hd0,0). The command chainloader +1 causes GRUB to read and execute the first sector of the specified partition.

The next entry enables booting from floppy disk without modifying the BIOS settings.

The boot option failsafe starts Linux with a selection of kernel parameters that enables Linux to boot even on problematic systems.

The menu file can be changed whenever necessary. GRUB then uses the modified settings during the next boot. Edit the file permanently using YaST or an editor of your choice. Alternatively, make temporary changes interactively using the edit function of GRUB. See Editing Menu Entries during the Boot Procedure.

Editing Menu Entries during the Boot Procedure

In the graphical boot menu, select the operating system to boot with the arrow keys. If you select a Linux system, you can enter additional boot parameters at the boot prompt. To edit individual menu entries directly, press Esc to exit the splash screen and get to the GRUB text-based menu then press E. Changes made in this way only apply to the current boot and are not adopted permanently.

IMPORTANT: Keyboard Layout during the Boot Procedure

The US keyboard layout is the only one available when booting. See Figure 36-3.

Editing menu entries facilitates the repair of a defective system that can no longer be booted, because the faulty configuration file of the boot loader can be circumvented by manually entering parameters. Manually entering parameters during the boot procedure is also useful for testing new settings without impairing the native system.

After activating the editing mode, use the arrow keys to select the menu entry of the configuration to edit. To make the configuration editable, press E again. In this way, edit incorrect partitions or path specifications before they have a negative effect on the boot process. Press Enter to exit the editing mode and return to the menu. Then press B to boot this entry. Further possible actions are displayed in the help text at the bottom.

To enter changed boot options permanently and pass them to the kernel, open the file menu.lst as the user root and append the respective kernel parameters to the existing line, separated by spaces:

title linux
     kernel /vmlinuz root=/dev/sda3 additional parameter
   initrd /initrd

GRUB automatically adopts the new parameters the next time the system is booted. Alternatively, this change can also be made with the YaST boot loader module. Append the new parameters to the existing line, separated by spaces.

11.1.2 The File device.map

The file device.map maps GRUB and BIOS device names to Linux device names. In a mixed system containing PATA (IDE) and SCSI hard disks, GRUB must try to determine the boot sequence by a special procedure, because GRUB may not have access to the BIOS information on the boot sequence. GRUB saves the result of this analysis in the file /boot/grub/device.map. Example device.map files for a system on which the boot sequence in the BIOS is set to PATA before SCSI could look as follows:

(fd0)  /dev/fd0
(hd0)  /dev/sda
(hd1)  /dev/sdb


(fd0)  /dev/fd0
(hd0)  /dev/disk-by-id/DISK1 ID
(hd1)  /dev/disk-by-id/DISK2 ID

Because the order of PATA (IDE), SCSI and other hard disks depends on various factors and Linux is not able to identify the mapping, the sequence in the file device.map can be set manually. If you encounter problems when booting, check if the sequence in this file corresponds to the sequence in the BIOS and use the GRUB prompt to modify it temporarily, if necessary. After the Linux system has booted, the file device.map can be edited permanently with the YaST boot loader module or an editor of your choice.

NOTE: Maximum Number of Hard Disks

To address a hard disk, GRUB uses BIOS services. This is done via the software interrupt Int13h. Since Int13h is limited to handling a maximum number of eight disks, GRUB can only boot from the disks handled by Int13h, even if there are more disks present (which is often the case on multipath systems). The device.map file created during the installation will therefore only contain a maximum number of the eight disks handled by Int13h.

After manually changing device.map, execute the following command to reinstall GRUB. This command causes the file device.map to be reloaded and the commands listed in grub.conf to be executed:

grub --batch < /etc/grub.conf

11.1.3 The File /etc/grub.conf

The third important GRUB configuration file after menu.lst and device.map is /etc/grub.conf. This file contains the commands, parameters and options the GRUB shell needs for installing the boot loader correctly:

setup --stage2=/boot/grub/stage2 --force-lba (hd0,1) (hd0,1)

This command tells GRUB to automatically install the boot loader to the second partition on the first hard disk (hd0,1) using the boot images located on the same partition. The --stage2=/boot/grub/stage2 parameter is needed to install the stage2 image from a mounted file system. Some BIOSes have a faulty LBA support implementation, --force-lba provides a solution to ignore them.

11.1.4 The File /etc/sysconfig/bootloader

This configuration file is only used when configuring the boot loader with YaST and every time a new kernel is installed. It is evaluated by the perl-bootloader library which modifies the boot loader configuration file (for example /boot/grub/menu.lst for GRUB) accordingly. /etc/sysconfig/bootloader is not a GRUB specific configuration file - the values are applied to any boot loader installed on SUSE Linux Enterprise Server.

NOTE: Boot loader Configuration after a Kernel Update

Every time a new kernel is installed, the perl-bootloader writes a new boot loader configuration file (for example /boot/grub/menu.lst for GRUB) using the defaults specified in /etc/sysconfig/bootloader. If you are using a customized set of kernel parameters, make sure to adjust the relevant defaults in /etc/sysconfig/bootloader according to your needs.


Specifies the boot loader installed on the system (e.g. GRUB or LILO). Do not modify—use YaST to change the boot loader as described in Changing the Boot Loader Type.


Screen resolution and color depth of the framebuffer used during booting are configured with the kernel parameter vga. These values define which resolution and color depth to use for the default boot entry, the failsafe and the XEN entry. The following values are valid:

Table 11-1 Screen Resolution and Color Depth Reference































Kernel parameters (other than vga) that are automatically appended to the default, failsafe and XEN boot entries in the boot loader configuration file.


Configure whether to use boot cycle detection and if so, which alternative entry from /boot/grub/menu.lst to boot in case of a reboot cycle (e.g. Failsafe). See /usr/share/doc/packages/bootcycle/README for detailed information.

11.1.5 Setting a Boot Password

Even before the operating system is booted, GRUB enables access to file systems. Users without root permissions can access files in your Linux system to which they have no access once the system is booted. To block this kind of access or to prevent users from booting certain operating systems, set a boot password.

IMPORTANT: Boot Password and Splash Screen

If you use a boot password for GRUB, the usual splash screen is not displayed.

As the user root, proceed as follows to set a boot password:

  1. At the root prompt, encrypt the password using grub-md5-crypt:

    # grub-md5-crypt
    Password: ****
    Retype password: ****
    Encrypted: $1$lS2dv/$JOYcdxIn7CJk9xShzzJVw/
  2. Paste the encrypted string into the global section of the file menu.lst:

    gfxmenu (hd0,4)/message
    color white/blue black/light-gray
    default 0
    timeout 8
    password --md5 $1$lS2dv/$JOYcdxIn7CJk9xShzzJVw/

    Now GRUB commands can only be executed at the boot prompt after pressing P and entering the password. However, users can still boot all operating systems from the boot menu.

  3. To prevent one or several operating systems from being booted from the boot menu, add the entry lock to every section in menu.lst that should not be bootable without entering a password. For example:

    title linux
       kernel (hd0,4)/vmlinuz root=/dev/sda7 vga=791
       initrd (hd0,4)/initrd

    After rebooting the system and selecting the Linux entry from the boot menu, the following error message is displayed:

    Error 32: Must be authenticated

    Press Enter to enter the menu. Then press P to get a password prompt. After entering the password and pressing Enter, the selected operating system (Linux in this case) should boot.