Virtualization Best Practices

 SUSE Linux Enterprise Server

 15

Virtualization Scenarios

 Virtualization offers a lot of capabilities to your environment. It can be
 used in multiple scenarios. To get more details about Virtualization
 Capabilities and Virtualization
 Benefits, refer to the Virtualization
 Guide.

 This best practice guide will provide advice for making the right choice in
 your environment. It will recommend or discourage the usage of options
 depending on your workload. Fixing configuration issues and performing tuning
 tasks will increase the performance of VM Guest's near to bare metal.

Before You Apply Modifications

Back Up First

 Changing the configuration of the VM Guest or the VM Host Server can lead to
 data loss or an unstable state. It is really important that you do backups
 of files, data, images, etc. before making any changes. Without backups you
 cannot restore the original state after a data loss or a misconfiguration.
 Do not perform tests or experiments on production systems.

Test Your Workloads

 The efficiency of a virtualization environment depends on many factors.
 This guide provides a reference for helping to make good choices when
 configuring virtualization in a production environment. Nothing is
 carved in stone. Hardware, workloads, resource
 capacity, etc. should all be considered when planning, testing, and
 deploying your virtualization infra-structure. Testing your virtualized
 workloads is vital to a successful virtualization implementation.

Recommendations

Prefer the libvirt Framework

 SUSE strongly recommends using the libvirt framework to configure,
 manage, and operate VM Host Servers, containers and VM Guest. It offers a single
 interface (GUI and shell) for all supported virtualization technologies
 and therefore is easier to use than the hypervisor-specific tools.

 We do not recommend using libvirt and hypervisor-specific tools at the same time,
 because changes done with the hypervisor-specific tools may
 not be recognized by the libvirt tool set. See
 https://www.suse.com/documentation/sles-12/book_virt/data/cha_libvirt_overview.html
 for more information on libvirt.

qemu-system-i386 Compared to qemu-system-x86_64

 Similar to real 64-bit PC hardware, qemu-system-x86_64
 supports VM Guests running a 32-bit or a 64-bit operating system. Because
 qemu-system-x86_64 usually also provides better
 performance for 32-bit guests, SUSE generally recommends using
 qemu-system-x86_64 for both 32-bit and 64-bit VM Guests
 on KVM. Scenarios where qemu-system-i386 is known to
 perform better are not supported by SUSE.

 Xen also uses binaries from the qemu package but prefers
 qemu-system-i386, which can be used for both 32-bit and
 64-bit Xen VM Guests. To maintain compatibility with the upstream Xen
 Community, SUSE encourages using qemu-system-i386 for
 Xen VM Guests.

VM Host Server Configuration and Resource Allocation

 Allocation of resources for VM Guests is a crucial point when
 administrating virtual machines. When assigning resources to VM Guests, be
 aware that overcommitting resources may affect the performance of the
 VM Host Server and the VM Guests. If all VM Guests request all their resources
 simultaneously, the host needs to be able to provide all of them. If not,
 the host's performance will be negatively affected and this will in turn
 also have negative effects on the VM Guest's performance.

Memory

 Linux manages memory in units called pages. On most systems the default
 page size is 4 KB. Linux and the CPU need to know which pages belong to
 which process. That information is stored in a page table. If a lot of
 processes are running, it takes more time to find where the memory is
 mapped, because of the time required to search the page table. To speed up the
 search, the TLB (Translation Lookaside Buffer) was invented. But on a
 system with a lot of memory, the TLB is not enough. To avoid any fallback
 to normal page table (resulting in a cache miss, which is time consuming),
 huge pages can be used. Using huge pages will reduce TLB overhead and TLB
 misses (pagewalk). A host with 32 GB (32*1014*1024 = 33,554,432 KB) of
 memory and a 4 KB page size has a TLB with 33,554,432/4 =
 8,388,608 entries. Using a 2 MB (2048 KB) page size, the TLB
 only has 33554432/2048 = 16384 entries, considerably
 reducing TLB misses.

Configuring the VM Host Server and the VM Guest to use Huge Pages

 Current CPU architectures support larger pages than 4 KB: huge pages.
 To determine the size of huge pages available on your system (could be
 2 MB or 1 GB), check the flags line in the output of
 /proc/cpuinfo for occurrences of
 pse and/or pdpe1gb.

Table 1. Determine the Available Huge Pages Size
	

 CPU flag

 	

 Huge pages size available

	

 Empty string

 	

 No huge pages available

	

 pse

 	

 2 MB

	

 pdpe1gb

 	

 1 GB

 Using huge pages improves performance of VM Guests and reduces host
 memory consumption.

 By default the system uses THP. To make huge pages available on your
 system, activate it at boot time with hugepages=1,
 and—optionally—add the huge pages size with, for example,
 hugepagesz=2MB.

1 GB huge pages

 1 GB pages can only be allocated at boot time and cannot be freed
 afterward.

 To allocate and use the huge page table (HugeTlbPage) you need to mount
 hugetlbfs with correct permissions.

Restrictions of Huge Pages

 Even if huge pages provide the best performance, they do come with
 some drawbacks. You lose features such as Memory ballooning (see
 Section “virtio balloon”), KSM (see
 Section “KSM and Page Sharing”), and huge pages cannot be swapped.

Procedure 1. Configuring the use of huge pages
	
 Mount hugetlbfs to
 /dev/hugepages:

tux > sudo mount -t hugetlbfs hugetlbfs /dev/hugepages

	
 To reserve memory for huge pages use the sysctl
 command. If your system has a huge page size of 2 MB (2048 KB), and you
 want to reserve 1 GB (1,048,576 KB) for your VM Guest, you need
 1,048,576/2048=512 pages in the pool:

tux > sudo sysctl vm.nr_hugepages=512

 The value is written to /proc/sys/vm/nr_hugepages
 and represents the current number of persistent
 huge pages in the kernel's huge page pool.
 Persistent huge pages will be returned to the huge
 page pool when freed by a task.

	
 Add the memoryBacking element in the VM Guest
 configuration file (by running virsh edit
 CONFIGURATION).

<memoryBacking>
 <hugepages/>
</memoryBacking>

	
 Start your VM Guest and check on the host whether it uses hugepages:

tux > cat /proc/meminfo | grep HugePages_
HugePages_Total:[image: 1] 512
HugePages_Free:[image: 2] 92
HugePages_Rsvd:[image: 3] 0
HugePages_Surp:[image: 4] 0
	[image: 1]
	
 Size of the pool of huge pages

	[image: 2]
	
 Number of huge pages in the pool that are not yet allocated

	[image: 3]
	
 Number of huge pages for which a commitment to allocate from the
 pool has been made, but no allocation has yet been made

	[image: 4]
	
 Number of huge pages in the pool above the value in
 /proc/sys/vm/nr_hugepages. The maximum number
 of surplus huge pages is controlled by
 /proc/sys/vm/nr_overcommit_hugepages

Transparent Huge Pages

 Transparent huge pages (THP) provide a way to dynamically allocate huge
 pages with the khugepaged kernel thread, rather than
 manually managing their allocation and use. Workloads with contiguous
 memory access patterns can benefit greatly from THP. A 1000 fold
 decrease in page faults can be observed when running synthetic
 workloads with contiguous memory access patterns. Conversely, workloads
 with sparse memory access patterns (like databases) may perform poorly
 with THP. In such cases it may be preferable to disable THP by adding
 the kernel parameter transparent_hugepage=never,
 rebuild your grub2 configuration, and reboot. Verify if THP is disabled
 with:

tux > cat /sys/kernel/mm/transparent_hugepage/enabled
always madvise [never]

 If disabled, the value never is shown in square
 brackets like in the example above.

Xen

 THP is not available under Xen.

Xen-specific Memory Notes

Managing Domain-0 Memory

 When using the Xen hypervisor, by default a small percentage of
 system memory is reserved for the hypervisor. All remaining
 memory is automatically allocated to Domain-0. When virtual machines are
 created, memory is ballooned out of Domain-0 to provide memory for the
 virtual machine. This process is called "autoballooning".

 Autoballooning has several limitations:

	
 Reduced performance while dom0 is ballooning down to free memory for
 the new domain.

	
 Memory freed by ballooning is not confined to a specific NUMA node.
 This can result in performance problems in the new domain because of
 using a non-optimal NUMA configuration.

	
 Failure to start large domains because of delays while ballooning large
 amounts of memory from dom0.

 For these reasons, we strongly recommend to disable
 autoballooning and give Domain-0 the memory needed for its workload.
 Determining Domain-0 memory and vCPU sizing should follow a similar
 process as any other virtual machine.

 Autoballooning is controlled by the toolstack used to manage your Xen
 installation. For the xl/libxl toolstack, autoballooning is controlled by
 the autoballoon setting in
 /etc/xen/xl.conf. For the libvirt+libxl toolstack,
 autoballooning is controlled by the autoballoon setting
 in /etc/libvirt/libxl.conf.

 The amount of memory initially allocated to Domain-0 is controlled by
 the Xen hypervisor dom0_mem parameter. For example, to set the initial
 memory allocation of Domain-0 to 8GB, add dom0_mem=8G to
 the Xen hypervisor parameters. The dom0_mem parameter can also be used
 to specify the minimum and maximum memory allocations for Domain-0. For
 example, to set the initial memory of Domain-0 to 8GB, but allow it to
 be changed (ballooned) anywhere between 4GB and 16GB, add the following
 to the Xen hypervisor parameters: dom0_mem=8G,min:4G,max:8G.

	
 To set dom0_mem on SLE 11 products, modify
 /boot/grub/menu.lst, adding
 dom0_mem=XX to the Xen hypervisor (xen.gz)
 parameters. The change will be applied at next reboot.

	
 To set dom0_mem on SLE 12 products, modify
 /etc/default/grub, adding
 dom0_mem=XX to
 GRUB_CMDLINE_XEN_DEFAULT. See Section “Change Kernel Parameters at Boot Time” for more information.

 Autoballooning is enabled by default since it is extremely difficult
 to determine a predefined amount of memory required by Domain-0.
 Memory needed by Domain-0 is heavily dependent on the number of hosted
 virtual machines and their configuration. Users must ensure Domain-0
 has sufficient memory resources to accommodate virtual machine
 workloads.

xenstore in tmpfs

 When using Xen, we recommend to place the xenstore database on
 tmpfs. xenstore is used as a control plane by
 the xm/xend and xl/libxl toolstacks and the front-end and back-end drivers
 servicing domain I/O devices. The load on xenstore increases linearly as
 the number of running domains increase. If you anticipate hosting many
 VM Guest on a Xen host, move the xenstore database onto tmpfs to
 improve overall performance of the control plane. Mount the
 /var/lib/xenstored directory on tmpfs:

tux > sudo mount -t tmpfs tmpfs /var/lib/xenstored/

KSM and Page Sharing

 Kernel Samepage Merging is a kernel feature that allows for lesser memory
 consumption on the VM Host Server by sharing data VM Guests have in common. The
 KSM daemon ksmd periodically scans
 user memory looking for pages of identical content which can be replaced
 by a single write-protected page. To enable KSM, run:

tux > sudo echo 1 > /sys/kernel/mm/ksm/run

 One advantage of using KSM from a VM Guest's perspective is that all
 guest memory is backed by host anonymous memory. You can share
 pagecache, tmpfs or any kind of
 memory allocated in the guest.

 KSM is controlled by sysfs. You can check KSM's
 values in /sys/kernel/mm/ksm/:

	pages_shared: The number of shared pages that are
 being used (read-only).

	pages_sharing: The number of sites sharing the
 pages (read-only).

	pages_unshared: The number of pages that are unique
 and repeatedly checked for merging (read-only).

	pages_volatile: The number of pages that are changing
 too fast to be considered for merging (read-only).

	full_scans: The number of times all mergeable areas
 have been scanned (read-only).

	sleep_millisecs: The number of milliseconds
 ksmd should sleep before the
 next scan. A low value will overuse the CPU, consuming CPU time that
 could be used for other tasks. We recommend a value greater than
 1000.

	pages_to_scan: The number of present pages to scan
 before ksmd goes to sleep. A high value will overuse the CPU. We
 recommend to start with a value of 1000, and then
 adjust as necessary based on the KSM results observed while testing
 your deployment.

	merge_across_nodes: By default the system merges
 pages across NUMA nodes. Set this option to 0 to
 disable this behavior.

Use Cases

 KSM is a good technique to over-commit host memory when running
 multiple instances of the same application or VM Guest. When
 applications and VM Guest are heterogeneous and do not share any
 common data, it is preferable to disable KSM. In a mixed heterogeneous
 and homogeneous environment, KSM can be enabled on the host but
 disabled on a per VM Guest basis. Use virsh edit
 to disable page sharing of a VM Guest by adding the following to the
 guest's XML configuration:

<memoryBacking>
 <nosharepages/>
</memoryBacking>

Avoid Out-of-Memory Conditions

 KSM can free up some memory on the host system, but the administrator
 should reserve enough swap to avoid out-of-memory conditions if
 that shareable memory decreases. If the amount of
 shareable memory decreases, the use of physical memory is increased.

Memory Access Latencies

 By default, KSM will merge common pages across NUMA nodes. If the merged,
 common page is now located on a distant NUMA node (relative to the node
 running the VM Guest vCPUs), this may degrade VM Guest performance.
 If increased memory access latencies are noticed in the VM Guest,
 disable cross-node merging with the
 merge_across_nodes sysfs control:

tux > sudo echo 0 > /sys/kernel/mm/ksm/merge_across_nodes

VM Guest: Memory Hotplug

 To optimize the usage of your host memory, it may be useful to hotplug
 more memory for a running VM Guest when required. To support memory
 hotplugging, you must first configure the
 <maxMemory> tag in the VM Guest's
 configuration file:

<maxMemory[image: 1] slots='16'[image: 2] unit='KiB'>20971520[image: 3]</maxMemory>
 <memory[image: 4] unit='KiB'>1048576</memory>
<currentMemory[image: 5] unit='KiB'>1048576</currentMemory>
	[image: 1]
	
 Runtime maximum memory allocation of the guest.

	[image: 2]
	
 Number of slots available for adding memory to the guest

	[image: 3]
	
 Valid units are:

	
"KB" for kilobytes (1,000 bytes)

	
"k" or "KiB" for kibibytes (1,024 bytes)

	
"MB" for megabytes (1,000,000 bytes)

	
"M" or "MiB" for mebibytes (1,048,576 bytes)

	
"GB" for gigabytes (1,000,000,000 bytes)

	
"G" or "GiB" for gibibytes (1,073,741,824 bytes)

	
"TB" for terabytes (1,000,000,000,000 bytes)

	
"T" or "TiB" for tebibytes (1,099,511,627,776 bytes)

	[image: 4]
	
 Maximum allocation of memory for the guest at boot time

	[image: 5]
	
 Actual allocation of memory for the guest

 To hotplug memory devices into the slots, create a file
 mem-dev.xml like the following:

<memory model='dimm'>
 <target>
 <size unit='KiB'>524287</size>
 <node>0</node>
 </target>
</memory>

 And attach it with the following command:

tux > virsh attach-device vm-name mem-dev.xml

 For memory device hotplug, the guest must have at least 1 NUMA cell
 defined (see Section “VM Guest Virtual NUMA Topology”).

Swap

Swap is usually used by the system to store
 underused physical memory (low usage, or not accessed for a long time).
 To prevent the system running out of memory, setting up a minimum swap
 is highly recommended.

 swappiness

 The swappiness setting controls your system's swap
 behavior. It defines how memory pages are swapped to disk. A high value of
 swappiness results in a system that swaps more often.
 Available values range from 0 to
 100. A value of 100 tells the
 system to find inactive pages and put them in swap. A value of
 0 disables swapping.

 To do some testing on a live system, change the value
 of /proc/sys/vm/swappiness on the fly and check the
 memory usage afterward:

tux > sudo echo 35 > /proc/sys/vm/swappiness
tux > free -h
total used free shared buffers cached
Mem: 24616680 4991492 19625188 167056 144340 2152408
-/+ buffers/cache: 2694744 21921936
Swap: 6171644 0 6171644

 To permanently set a swappiness value, add a line in
 /etc/systcl.conf, for example:

vm.swappiness = 35

 You can also control the swap by using the
 swap_hard_limit element in the XML configuration of
 your VM Guest. Before setting this parameter and using it in a production
 environment, do some testing because the host can terminate the domain if
 the value is too low.

<memtune>[image: 1]
 <hard_limit unit='G'>1</hard_limit>[image: 2]
 <soft_limit unit='M'>128</soft_limit>[image: 3]
 <swap_hard_limit unit='G'>2</swap_hard_limit>[image: 4]
</memtune>
	[image: 1]
	
 This element provides memory tunable parameters for the domain. If
 this is omitted, it defaults to the defaults provided b the operating
 system.

	[image: 2]
	
 Maximum memory the guest can use. To avoid any problems on the
 VM Guest it is strongly recommended not to use this parameter.

	[image: 3]
	
 The memory limit to enforce during memory contention.

	[image: 4]
	
 The maximum memory plus swap the VM Guest can use.

I/O

I/O Scheduler

 The default I/O scheduler is Completely Fair Queuing (CFQ). The main aim
 of the CFQ scheduler is to provide a fair allocation of the disk I/O
 bandwidth for all processes that request an I/O operation. You can have
 different I/O schedulers for different devices.

 To get better performance in host and VM Guest, use noop
 in the VM Guest (disable the I/O scheduler) and the
 deadline scheduler for a virtualization host.

Procedure 2. Checking and Changing the I/O Scheduler at Runtime
	
 To check your current I/O scheduler for your disk (replace
 sdX by the disk you want to check), run:

tux > cat /sys/block/sdX/queue/scheduler
noop deadline [cfq]

 The value in square brackets is the one currently selected
 (cfq in the example above).

	
 You can change the scheduler at runtime with the following command:

tux > sudo echo deadline > /sys/block/sdX/queue/scheduler

 To permanently set an I/O scheduler for all disks of a system, use the
 kernel parameter elevator. The respective values are
 elevator=deadline for the VM Host Server
 and elevator=noop for VM Guests. See Section “Change Kernel Parameters at Boot Time” for further instructions.

 If you need to specify different I/O schedulers for each disk, create the
 file /usr/lib/tmpfiles.d/IO_ioscheduler.conf with a
 content similar to the following example. It defines the
 deadline scheduler for /dev/sda and
 the noop scheduler for
 /dev/sdb. This feature is available on SLE 12
 only.

w /sys/block/sda/queue/scheduler - - - - deadline
w /sys/block/sdb/queue/scheduler - - - - noop

Asynchronous I/O

 Many of the virtual disk backends use Linux Asynchronous I/O (aio)
 in their implementation. By default, the maximum number aio contexts
 is set to 65536, which can be exceeded when running hundreds of
 VM Guests using virtual disks serviced by Linux Asynchronous I/O.
 When running large numbers of VM Guests on a VM Host Server, consider
 increasing /proc/sys/fs/aio-max-nr.

Procedure 3. Checking and Changing aio-max-nr at Runtime
	
 To check your current aio-max-nr setting run:

tux > cat /proc/sys/fs/aio-max-nr
65536

	
 You can change aio-max-nr at runtime with the following command:

tux > sudo echo 131072 > /proc/sys/fs/aio-max-nr

 To permanently set aio-max-nr, add an entry to a local sysctl file. For
 example, append the following to /etc/sysctl.d/99-sysctl.conf:

fs.aio-max-nr = 1048576

I/O Virtualization

 SUSE products support various I/O virtualization technologies. The
 following table lists advantages and disadvantages of each technology. For
 more information about I/O in virtualization refer to the I/O
 in Virtualization chapter in the SUSE Linux Enterprise Server15 Virtualization Guide.

Table 2. I/O Virtualization Solutions
	

 Technology

 	

 Advantage

 	

 Disadvantage

	

 Device Assignment
 (pass-through)

 	

 Device accessed directly by the guest

 	

 No sharing among multiple guests

	

 High performance

 	

 Live migration is complex

	

 	

 PCI device limit is 8 per guest

	

 	

 Limited number of slots on a server

	

 Full virtualization
 (IDE, SATA, SCSI, e1000)

 	

 VM Guest compatibility

 	

 Bad performance

	

 Easy for live migration

 	

 Emulated operation

	

 Para-virtualization
 (virtio-blk, virtio-net, virtio-scsi)

 	

 Good performance

 	

 Modified guest (PV drivers)

	

 Easy for live migration

 	

	

 Efficient host communication with VM Guest

 	

Storage and File System

 Storage space for VM Guests can either be a block device (for example, a
 partition on a physical disk), or an image file on the file system:

Table 3. Block Devices Compared to Disk Images
	

 Technology

 	

 Advantages

 	

 Disadvantages

	

 Block devices

 	
 	
 Better performance

	
 Use standard tools for administration/disk modification

	
 Accessible from host (pro and con)

 	
 	
 Live migration is complex

	
 Impossible to increase capacity

	

 Image files

 	
 	
 Easier system management

	
 Easily move, clone, expand, back up domains

	
 Comprehensive toolkit (guestfs) for image manipulation

	
 Reduce overhead through sparse files

	
 Fully allocate for best performance

 	
 	
 Lower performance than block devices

 For detailed information about image formats and maintaining images refer
 to Section “VM Guest Images”.

 If your image is stored on an NFS share, you should check some server
 and client parameters to improve access to the VM Guest image.

NFS Read/Write (Client)

 Options rsize and wsize specify the size
 of the chunks of data that the client and server pass back and forth to
 each other. You should ensure NFS read/write sizes are sufficiently large,
 especially for large I/O. Change the rsize and
 wsize parameter in your /etc/fstab
 by increasing the value to 16 KB. This will ensure that all operations
 can be frozen if there is any instance of hanging.

nfs_server:/exported/vm_images[image: 1] /mnt/images[image: 2] nfs[image: 3] rw[image: 4],hard[image: 5],sync[image: 6], rsize=8192[image: 7],wsize=8192[image: 8] 0 0
	[image: 1]
	
 NFS server's host name and export path name.

	[image: 2]
	
 Where to mount the NFS exported share.

	[image: 3]
	
 This is an nfs mount point.

	[image: 4]
	
 This mount point will be accessible in read/write.

	[image: 5]
	
 Determines the recovery behavior of the NFS client after an NFS
 request times out. hard is the best option to avoid
 data corruption.

	[image: 6]
	
 Any system call that writes data to files on that mount point causes
 that data to be flushed to the server before the system call returns
 control to user space.

	[image: 7]
	
 Maximum number of bytes in each network READ request that the NFS
 client can receive when reading data from a file on an NFS server.

	[image: 8]
	
 Maximum number of bytes per network WRITE request that the NFS
 client can send when writing data to a file on an NFS server.

NFS Threads (Server)

 Your NFS server should have enough NFS threads to handle
 multi-threaded workloads. Use the nfsstat tool to
 get some RPC statistics on your server:

tux > sudo nfsstat -rc
Client rpc stats:
calls retrans authrefrsh
6401066 198 0 0

 If the retrans is equal to 0, everything is fine.
 Otherwise, the client needs to retransmit, so increase the
 USE_KERNEL_NFSD_NUMBER variable in
 /etc/sysconfig/nfs, and adjust accordingly until
 retrans is equal to 0.

CPUs

 Host CPU “components” will be “translated” to
 virtual CPUs in a VM Guest when being assigned. These components can
 either be:

	CPU processor: this describes the main CPU unit,
 which usually has multiple cores and may support Hyper-Threading.

	CPU core: a main CPU unit can provide more than
 one core, and the proximity of cores speeds up the computation process
 and reduces energy costs.

	CPU Hyper-Threading: this implementation is used
 to improve parallelization of computations, but this is not as efficient
 as a dedicated core.

Assigning CPUs

 You should avoid overcommitting CPUs. Unless you know exactly how many
 virtual CPUs are required for a VM Guest, you should start with a single
 virtual CPU per VM Guest. Each virtual CPU should match one hardware
 processor or core on the VM Host Server.

 You should target a CPU workload of approximately 70% inside your VM (see
 https://www.suse.com/documentation/sles-12/book_sle_tuning/data/sec_util_processes.html for information on monitoring
 tools). If you allocate more processors than needed in the VM Guest, this
 will negatively affect the performance of host and guest: cycle efficiency
 will be degraded, the unused vCPU will consume timer interrupts and will
 idle-loop. In case you primarily run single threaded applications on a
 VM Guest, a single virtual CPU is the best choice.

VM Guest CPU Configuration

 This section describes how to choose and configure a CPU type for a
 VM Guest. You will also learn how to pin virtual CPUs to physical CPUs on
 the host system. For more information about virtual CPU configuration and
 tuning parameters refer to the libvirt documentation at https://libvirt.org/formatdomain.html#elementsCPU.

Virtual CPU Models and Features

 The CPU model and topology can be specified individually for each
 VM Guest. Configuration options range from selecting specific CPU models
 to excluding certain CPU features. Predefined CPU models are listed in
 the /usr/share/libvirt/cpu_map.xml. A CPU model and
 topology that is similar to the host generally provides the best
 performance. The host system CPU model and topology can be displayed by
 running virsh capabilities.

 Note that changing the default virtual CPU configuration will require a
 VM Guest shutdown when migrating it to a host with different hardware.
 More information on VM Guest migration is available at https://www.suse.com/documentation/sles-12/book_virt/data/sec_libvirt_admin_migrate.html.

 To specify a particular CPU model for a VM Guest, add a respective entry
 to the VM Guest configuration file. The following example configures a
 Broadwell CPU with the invariant TSC feature:

<cpu mode='custom' match='exact'>
 <model>Broadwell</model>
 <feature name='invtsc'/>
 </cpu>

 For a virtual CPU that most closely resembles the host physical CPU,
 <cpu mode='host-passthrough'> can be used. Note
 that a host-passthrough CPU model may not exactly
 resemble the host physical CPU, since by default KVM will mask any
 non-migratable features. For example invtsc is not included in the
 virtual CPU feature set. Changing the default KVM behavior is not
 directly supported through libvirt, although it does allow arbitrary
 passthrough of KVM command line arguments. Continuing with the
 invtsc example, you can achieve passthrough of the host
 CPU (including invtsc) by the following
 command line passthrough in VM Guest configuration file:

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
 <qemu:commandline>
 <qemu:arg value='-cpu'/>
 <qemu:arg value='host,migratable=off,+invtsc'/>
 </qemu:commandline>
 ...
 </domain>

The host-passthrough Mode

 Since host-passthrough exposes the physical
 CPU details to the virtual CPU, migration to dissimilar hardware
 is not possible. See
 Section “Virtual CPU Migration Considerations” for more
 information.

Virtual CPU Pinning

 Virtual CPU pinning is used to constrain virtual CPU threads to a set of
 physical CPUs. The vcpupin element specifies the
 physical host CPUs that a virtual CPU can use. If this element is not
 set and the attribute cpuset of the
 vcpu element is not specified, the virtual CPU is
 free to use any of the physical CPUs.

 CPU intensive workloads can benefit from virtual CPU pinning by
 increasing the physical CPU cache hit ratio. To pin a virtual CPU to a
 specific physical CPU, run the following commands:

tux > virsh vcpupin DOMAIN_ID --vcpu vCPU_NUMBER
VCPU: CPU Affinity

0: 0-7
root # virsh vcpupin SLE12 --vcpu 0 0 --config

 The last command generates the following entry in the XML configuration:

<cputune>
 <vcpupin vcpu='0' cpuset='0'/>
</cputune>
Virtual CPU Pinning on NUMA Nodes

 To confine a VM Guest's CPUs and its memory to a NUMA node, you can use
 virtual CPU pinning and memory allocation policies on a NUMA system.
 See Section “NUMA Tuning” for more information
 related to NUMA tuning.

Virtual CPU Pinning and Live Migration

 Even though vcpupin can improve performance, it can
 complicate live migration. See
 Section “Virtual CPU Migration Considerations” for more
 information on virtual CPU migration considerations.

Virtual CPU Migration Considerations

 Selecting a virtual CPU model containing all the latest features
 may improve performance of a VM Guest workload—but often at
 the expense of migratability. Unless all hosts in the cluster contain
 the latest CPU features, migration can fail when a destination host
 lacks the new features. If migratability of a virtual CPU is preferred
 over the latest CPU features, a normalized CPU model and feature set
 should be used. The virsh cpu-baseline command can
 help define a normalized virtual CPU that can be migrated across all
 hosts. The following command, when run on each host in the migration
 cluster, illustrates collection of all hosts' capabilities in
 all-hosts-caps.xml.

tux > sudo virsh capabilities >> all-hosts-cpu-caps.xml

 With the capabilities from each host collected in
 all-hosts-caps.xml, use virsh cpu-baseline to
 create a virtual CPU definition that will be compatible across all hosts.

tux > sudo virsh cpu-baseline all-hosts-caps.xml

 The resulting virtual CPU definition can be used as the
 cpu element in VM Guest configuration file.

 At a logical level, virtual CPU pinning is a form of hardware
 passthrough. Pinning couples physical resources to virtual resources,
 and can also be problematic for migration. For example, the migration will
 fail if the requested physical resources are not available on the destination
 host, or if the source and destination hosts have different NUMA topologies.
 For more recommendations about Live Migration see
 Virtualization
 Live Migration Requirements.

NUMA Tuning

 NUMA is an acronym for Non Uniform Memory Access. A NUMA system has
 multiple physical CPUs, each with local memory attached. Each CPU can also
 access other CPUs' memory, known as “remote memory access”,
 but it is much slower than accessing local memory. NUMA systems can
 negatively impact VM Guest performance if not tuned properly. Although
 ultimately tuning is workload dependent, this section describes controls
 that should be considered when deploying VM Guests on NUMA hosts. Always
 consider your host topology when configuring and deploying VMs.

SUSE Linux Enterprise Server contains a NUMA auto-balancer that strives to reduce remote
 memory access by placing memory on the same NUMA node as the CPU processing
 it. In addition, standard tools such as cgset and
 virtualization tools such as libvirt provide mechanisms to constrain
 VM Guest resources to physical resources.

numactl is used to check for host NUMA capabilities:

tux > sudo numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 72 73 74 75 76 77 78
79 80 81 82 83 84 85 86 87 88 89
node 0 size: 31975 MB
node 0 free: 31120 MB
node 1 cpus: 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 90 91 92 93
94 95 96 97 98 99 100 101 102 103 104 105 106 107
node 1 size: 32316 MB
node 1 free: 31673 MB
node 2 cpus: 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 108 109 110
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
node 2 size: 32316 MB
node 2 free: 31726 MB
node 3 cpus: 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 126 127 128
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
node 3 size: 32314 MB
node 3 free: 31387 MB
node distances:
node 0 1 2 3
0: 10 21 21 21
1: 21 10 21 21
2: 21 21 10 21
3: 21 21 21 10

 The numactl output shows this is a NUMA system with 4
 nodes or cells, each containing 36 CPUs and approximately 32G memory.
 virsh capabilities can also be used to examine the
 systems NUMA capabilities and CPU topology.

NUMA Balancing

 On NUMA machines, there is a performance penalty if remote memory is
 accessed by a CPU. Automatic NUMA balancing scans a task's address space
 and unmaps pages. By doing so, it detects whether pages are properly placed
 or whether to migrate the data to a memory node local to where the task is
 running. In defined intervals (configured with
 numa_balancing_scan_delay_ms), the task scans the next
 scan size number of pages (configured with
 numa_balancing_scan_size_mb) in its address
 space. When the end of the address space is reached the scanner restarts
 from the beginning.

 Higher scan rates cause higher system overhead as page faults must be
 trapped and data needs to be migrated. However, the higher the scan rate,
 the more quickly a task's memory is migrated to a local node when the
 workload pattern changes. This minimizes the performance impact because of
 remote memory accesses. These sysctl directives control
 the thresholds for scan delays and the number of pages scanned:

tux > sudo sysctl -a | grep numa_balancing
kernel.numa_balancing = 1[image: 1]
kernel.numa_balancing_scan_delay_ms = 1000[image: 2]
kernel.numa_balancing_scan_period_max_ms = 60000[image: 3]
kernel.numa_balancing_scan_period_min_ms = 1000[image: 4]
kernel.numa_balancing_scan_size_mb = 256[image: 5]
	[image: 1]
	
 Enables/disables automatic page fault-based NUMA balancing

	[image: 2]
	
 Starting scan delay used for a task when it initially forks

	[image: 3]
	
 Maximum time in milliseconds to scan a task's virtual memory

	[image: 4]
	
 Minimum time in milliseconds to scan a task's virtual memory

	[image: 5]
	
 Size in megabytes' worth of pages to be scanned for a given scan

 For more information see https://www.suse.com/documentation/sles-12/book_sle_tuning/data/cha_tuning_numactl.html.

 The main goal of automatic NUMA balancing is either to reschedule tasks on
 the same node's memory (so the CPU follows the memory), or to copy the
 memory's pages to the same node (so the memory follows the CPU).

Task Placement

 There are no rules to define the best place to run a task, because
 tasks could share memory with other tasks. For best performance, it is
 recommended to group tasks sharing memory on the same node. Check NUMA
 statistics with # cat /proc/vmstat | grep numa_.

Memory Allocation Control with the CPUset Controller

 The cgroups cpuset controller can be used confine memory used by a
 process to a NUMA node. There are three cpuset memory policy modes
 available:

	interleave: This is a memory placement policy
 which is also known as round-robin. This policy can provide
 substantial improvements for jobs that need to place thread local
 data on the corresponding node. When the interleave destination is
 not available, it will be moved to another node.

	bind: This will place memory only on one node,
 which means in case of insufficient memory, the allocation will fail.

	preferred: This policy will apply a preference
 to allocate memory to a node. If there is not enough space for
 memory on this node, it will fall back to another node.

 You can change the memory policy mode with the cgset
 tool from the libcgroup-tools package:

tux > sudo cgset -r cpuset.mems=NODE sysdefault/libvirt/qemu/KVM_NAME/emulator

 To migrate pages to a node, use the migratepages
 tool:

tux > migratepages PIDFROM-NODETO-NODE

 To check everything is fine. use: cat
 /proc/PID/status | grep Cpus.

Kernel NUMA/cpuset memory policy

 For more information see
 Kernel
 NUMA memory policy and
 cpusets
 memory policy. Check also the
 Libvirt
 NUMA Tuning documentation.

VM Guest: NUMA Related Configuration

libvirt allows to set up virtual NUMA and memory access policies.
 Configuring these settings is not supported by
 virt-install or virt-manager and
 needs to be done manually by editing the VM Guest configuration file with
 virsh edit.

VM Guest Virtual NUMA Topology

 Creating a VM Guest virtual NUMA (vNUMA) policy that resembles the host
 NUMA topology can often increase performance of traditional large,
 scale-up workloads. VM Guest vNUMA topology can be specified using the
 numa element in the XML configuration:

<cpu>
...
 <numa>
 <cell[image: 1] id='0'[image: 2] cpus='0-1'[image: 3] memory='512000' unit='KiB'/>
 <cell id='1' cpus='2-3' memory='256000'[image: 4]
 unit='KiB'[image: 5] memAccess='shared'[image: 6]/>
 </numa>
 ...
</cpu>
	[image: 1]
	
 Each cell element specifies a vNUMA cell or node

	[image: 2]
	
 All cells should have an id attribute, allowing
 to reference the cell in other configuration blocks. Otherwise cells
 are assigned ids in ascending order starting from 0.

	[image: 3]
	
 The CPU or range of CPUs that are part of the node

	[image: 4]
	
 The node memory

	[image: 5]
	
 Units in which node memory is specified

	[image: 6]
	
 Optional attribute which can control whether the memory is to be
 mapped as shared or private. This
 is valid only for hugepages-backed memory.

 To find where the VM Guest has allocated its pages. use: cat
 /proc/PID/numa_maps and
 cat
 /sys/fs/cgroup/memory/sysdefault/libvirt/qemu/KVM_NAME/memory.numa_stat.

NUMA specification

 The libvirt VM Guest NUMA specification is currently only available
 for QEMU/KVM.

Memory Allocation Control with libvirt

 If the VM Guest has a vNUMA topology (see Section “VM Guest Virtual NUMA Topology”), memory can be pinned to host
 NUMA nodes using the numatune element. This method
 is currently only available for QEMU/KVM guests. See Non-vNUMA VM Guest for how to
 configure non-vNUMA VM Guests.

<numatune>
 <memory mode="strict"[image: 1] nodeset="1-4,^3"[image: 2]/>
 <memnode[image: 3] cellid="0"[image: 4] mode="strict" nodeset="1"/>
 <memnode cellid="2" placement="strict"[image: 5] mode="preferred" nodeset="2"/>
</numatune>
	[image: 1]
	
 Policies available are: interleave (round-robin
 like), strict (default) or
 preferred.

	[image: 2]
	
 Specify the NUMA nodes.

	[image: 3]
	
 Specify memory allocation policies for each guest NUMA node (if this
 element is not defined then this will fall back and use the
 memory element).

	[image: 4]
	
 Addresses the guest NUMA node for which the settings are applied.

	[image: 5]
	
 The placement attribute can be used to indicate the memory placement
 mode for a domain process, the value can be auto
 or strict.

Non-vNUMA VM Guest

 On a non-vNUMA VM Guest, pinning memory to host NUMA nodes is done
 like in the following example:

<numatune>
 <memory mode="strict" nodeset="0-1"/>
</numatune>

 In this example, memory is allocated from the host nodes
 0 and 1. In case these memory
 requirements cannot be fulfilled, starting the VM Guest will fail.
 virt-install also supports this configuration with
 the --numatune option.

Memory and CPU across NUMA Nodes

 You should avoid allocating VM Guest memory across NUMA nodes, and
 prevent virtual CPUs from floating across NUMA nodes.

VM Guest Images

 Images are virtual disks used to store the operating system and data of
 VM Guests. They can be created, maintained and queried with the
 qemu-img command. Refer to SLE12
 qemu-img documentation for more information on the
 qemu-img tool and examples.

VM Guest Image Formats

 Certain storage formats which QEMU recognizes have their origins in
 other virtualization technologies. By recognizing these formats, QEMU
 can leverage either data stores or entire guests that were originally
 targeted to run under these other virtualization technologies.
 Some formats are supported only in read-only mode. To use them in read/write
 mode, convert them to a fully supported QEMU storage format (using
 qemu-img). Otherwise they can only be used as read-only
 data store in a QEMU guest. See SUSE Linux Enterprise
 Release
 Notes to get the list of supported formats.

 Use qemu-img info VMGUEST.IMG
 to get information about an existing image, such as: the format, the
 virtual size, the physical size, snapshots if available.

Performance

 It is recommended to convert the disk images to either raw or qcow2 to
 achieve good performance.

Encrypted Images Cannot Be Compressed

 When you create an image, you cannot use compression (-c)
 in the output file together with the encryption option
 (-e).

Raw Format

	
 This format is simple and easily exportable to all other
 emulators/hypervisors.

	
 It provides best performance (least I/O overhead).

	
 If your file system supports holes (for example in Ext2 or Ext3 on
 Linux or NTFS on Windows*), then only the written sectors will
 reserve space.

	
 The raw format allows to copy a VM Guest image to a physical device
 (dd if=VMGUEST.RAW
 of=/dev/sda).

	
 It is byte-for-byte the same as what the VM Guest sees, so this
 wastes a lot of space.

qcow2 Format

	
 Use this to have smaller images (useful if your file system does not
 supports holes).

	
 It has optional AES encryption (now deprecated).

	
 Zlib-based compression option.

	
 Support of multiple VM snapshots (internal, external).

	
 Improved performance and stability.

	
 Supports changing the backing file.

	
 Supports consistency checks.

	
 Less performance than raw format.

	l2-cache-size
	
 qcow2 can provide the same performance for random read/write access as
 raw format, but it needs a well-sized cache size. By default cache size
 is set to 1 MB. This will give good performance up to a disk size of 8
 GB. If you need a bigger disk size, you need to adjust the cache
 size. For a disk size of 64 GB (64*1024 = 65536), you need 65536 /
 8192B = 8 MB of cache (-drive
 format=qcow2,l2-cache-size=8M).

	Cluster Size
	
 The qcow2 format offers the capability to change the cluster size. The
 value must be between 512 KB and 2 MB. Smaller cluster sizes
 can improve the image file size whereas larger cluster sizes generally
 provide better performance.

	Preallocation
	
 An image with preallocated metadata is initially larger but can
 improve performance when the image needs to grow.

	Lazy Refcounts
	
 Reference count updates are postponed with the goal of avoiding
 metadata I/O and improving performance. This is particularly beneficial
 with cache=writethrough. This option does not batch metadata
 updates, but if in case of host crash, the reference count tables must be
 rebuilt, this is done automatically at the next open with
 qemu-img check -r all. Note that this takes some time.

qed Format

 qed is a follow-on qcow (QEMU Copy On Write) format. Because
 qcow2 provides all the benefits of qed and more, qed is now
 deprecated.

VMDK Format

 VMware 3, 4, or 6 image format, for exchanging images with that
 product.

Overlay Disk Images

 The qcow2 and qed formats provide a way to create a base image (also
 called backing file) and overlay images on top of the base image. A
 backing file is useful to be able to revert to a known state and discard
 the overlay. If you write to the image, the backing image will be
 untouched and all changes will be recorded in the overlay image file. The
 backing file will never be modified unless you use the
 commit monitor command (or qemu-img
 commit).

 To create an overlay image:

root # qemu-img create -o[image: 1]backing_file=vmguest.raw[image: 2],backing_fmt=raw[image: 3]\
 -f[image: 4] qcow2 vmguest.cow[image: 5]
	[image: 1]
	
 Use -o ? for an overview of available options.

	[image: 2]
	
 The backing file name.

	[image: 3]
	
 Specify the file format for the backing file.

	[image: 4]
	
 Specify the image format for the VM Guest.

	[image: 5]
	
 Image name of the VM Guest, it will only record the differences from
 the backing file.

Backing Image Path

 You should not change the path to the backing image, otherwise you
 will need to adjust it. The path is stored in the overlay image file.
 To update the path, you should make a symbolic link from
 the original path to the new path and then use the
 qemu-imgrebase option.

root # ln -sf /var/lib/images/vmguest.raw /var/lib/images/SLE12/vmguest.raw
root # qemu-img rebase[image: 1]-u[image: 2] -b[image: 3] /var/lib/images/vmguest.raw /var/lib/images/SLE12/vmguest.cow[image: 4]

 The rebase subcommand tells
 qemu-img to change the backing file image. The
 -u option activates the unsafe mode (see note below).
 The backing image to be used is specified with -b and
 the image path is the last argument of the command.

 There are two different modes in which rebase can
 operate:

	Safe: This is the default mode and performs a
 real rebase operation. The safe mode is a time-consuming operation.

	Unsafe: The unsafe mode (-u)
 only changes the backing files name and the format of the file name
 without making any checks on the files contents. You should use this
 mode to rename or moving a backing file.

 A common use is to initiate a new guest with the backing file. Let's
 assume we have a sle12_base.img VM Guest ready to
 be used (fresh installation without any modification). This will be our
 backing file. Now you need to test a new package, on an updated system
 and on a system with a different kernel. We can use
 sle12_base.img to instantiate the new SUSE Linux Enterprise
 VM Guest by creating a qcow2 overlay file pointing to this backing
 file (sle12_base.img).

 In our example we will use sle12_updated.qcow2 for
 the updated system, and sle12_kernel.qcow2 for the
 system with a different kernel.

 To create the two thin provisioned systems use the
 qemu-img command line with the -b
 option:

root # qemu-img create -b /var/lib/libvirt/sle12_base.img -f qcow2 \
/var/lib/libvirt/sle12_updated.qcow2
Formatting 'sle12_updated.qcow2', fmt=qcow2 size=17179869184
backing_file='sle12_base.img' encryption=off cluster_size=65536
lazy_refcounts=off nocow=off
root # qemu-img create -b /var/lib/libvirt/sle12_base.img -f qcow2 \
/var/lib/libvirt/sle12_kernel.qcow2
Formatting 'sle12_kernel.qcow2', fmt=qcow2 size=17179869184
backing_file='vmguest-sle12_base.img' encryption=off cluster_size=65536
lazy_refcounts=off nocow=off

 The images are now usable, and you can do your test without touching the
 initial sle12_base.img backing file, all changes will
 be stored in the new overlay images. Additionally, you can also use these
 new images as a backing file, and create a new overlay.

root # qemu-img create -b sle12_kernel.qcow2 -f qcow2 sle12_kernel_TEST.qcow2

 When using qemu-img info with the option
 --backing-chain, it will return all information about the
 entire backing chain recursively:

root # qemu-img info --backing-chain
/var/lib/libvirt/images/sle12_kernel_TEST.qcow2
image: sle12_kernel_TEST.qcow2
file format: qcow2
virtual size: 16G (17179869184 bytes)
disk size: 196K
cluster_size: 65536
backing file: sle12_kernel.qcow2
Format specific information:
compat: 1.1
lazy refcounts: false

image: sle12_kernel.qcow2
file format: qcow2
virtual size: 16G (17179869184 bytes)
disk size: 196K
cluster_size: 65536
backing file: SLE12.qcow2
Format specific information:
compat: 1.1
lazy refcounts: false

image: sle12_base.img
file format: qcow2
virtual size: 16G (17179869184 bytes)
disk size: 16G
cluster_size: 65536
Format specific information:
compat: 1.1
lazy refcounts: true
Figure 1. Understanding Image Overlay
[image: Understanding Image Overlay]

Opening a VM Guest Image

 To access the file system of an image, use the
 guestfs-tools. If you do not have this tool installed on
 your system you can mount an image with other Linux tools. Avoid
 accessing an untrusted or unknown VM Guest's image system because this
 can lead to security issues (for more information, read D.
 Berrangé's post).

Opening a Raw Image

Procedure 4. Mounting a Raw Image
	
 To be able to mount the image, find a free loop device. The following
 command displays the first unused loop device,
 /dev/loop1 in this example.

root # losetup -f
/dev/loop1

	
 Associate an image (SLE12.raw in this example) with
 the loop device:

root # losetup /dev/loop1 SLE12.raw

	
 Check whether the image has successfully been associated with the loop
 device by getting detailed information about the loop device:

root # losetup -l
NAME SIZELIMIT OFFSET AUTOCLEAR RO BACK-FILE
/dev/loop1 0 0 0 0 /var/lib/libvirt/images/SLE12.raw

	
 Check the image's partitions with kpartx:

root # kpartx -a[image: 1] -v[image: 2] /dev/loop1
add map loop1p1 (254:1): 0 29358080 linear /dev/loop1 2048
	[image: 1]
	
 Add partition device mappings.

	[image: 2]
	
 Verbose mode.

	
 Now mount the image partition(s) (to /mnt/sle12mount
 in the following example):

root # mkdir /mnt/sle12mount
root # mount /dev/mapper/loop1p1 /mnt/sle12mount

Raw image with LVM

 If your raw image contains an LVM volume group you should use LVM
 tools to mount the partition. Refer to
 Section “Opening Images Containing LVM”.

Procedure 5. Unmounting a Raw Image
	
 Unmount all mounted partitions of the image, for example:

root # umount /mnt/sle12mount

	
 Delete partition device mappings with kpartx:

root # kpartx -d /dev/loop1

	
 Detach the devices with losetup
root # losetup -d /dev/loop1

Opening a qcow2 Image

Procedure 6. Mounting a qcow2 Image
	
 First you need to load the nbd (network block
 devices) module. The following example loads it with support for 16 block
 devices (max_part=16). Check with
 dmesg whether the operation was successful:

root # modprobe nbd max_part=16
root # dmesg | grep nbd
[89155.142425] nbd: registered device at major 43

	
 Connect the VM Guest image (for example SLE12.qcow2)
 to an NBD device (/debv/nbd0 in the following
 example) with the qemu-nbd command. Make sure to use a
 free NBD device:

root # qemu-nbd -c[image: 1] /dev/nbd0[image: 2] SLE12.qcow2[image: 3]
	[image: 1]
	
 Connect SLE12.qcow2 to the local NBD device
 /dev/nbd0

	[image: 2]
	
 NBD device to use

	[image: 3]
	
 VM Guest image to use

Checking for a free NBD Device

 To check whether an NBD device is free, run the following command:

root # lsof /dev/nbd0
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
qemu-nbd 15149 root 10u BLK 43,0 0t0 47347 /dev/nbd0

 If the command produces an output like in the example above, the device
 is busy (not free). This can also be confirmed by the presence of the
 /sys/devices/virtual/block/nbd0/pid file.

	
 Inform the operating system about partition table changes with
 partprobe:

root # partprobe /dev/nbd0 -s
/dev/nbd0: msdos partitions 1 2
root # dmesg | grep nbd0 | tail -1
[89699.082206] nbd0: p1 p2

	
 In the example above, the SLE12.qcow2 contains two
 partitions: /dev/nbd0p1 and
 /dev/nbd0p2. Before mounting these partitions, use
 vgscan to check whether they belong to an LVM volume:

root # vgscan -v
 Wiping cache of LVM-capable devices
 Wiping internal VG cache
 Reading all physical volumes. This may take a while...
 Using volume group(s) on command line.
 No volume groups found.

	
 If no LVM volume has been found, you can mount the partition with
 mount:

root # mkdir /mnt/nbd0p2
mount /dev/nbd0p1 /mnt/nbd0p2

 Refer to Section “Opening Images Containing LVM” for information on how to
 handle LVM volumes.

Procedure 7. Unmounting a qcow2 Image
	
 Unmount all mounted partitions of the image, for example:

root # umount /mnt/nbd0p2

	
 Disconnect the image from the /dev/nbd0 device.

root # qemu-nbd -d /dev/nbd0

Opening Images Containing LVM

Procedure 8. Mounting Images Containing LVM
	
 To check images for LVM groups, use vgscan -v. If an
 image contains LVM groups, the output of the command looks like the
 following:

root # vgscan -v
Wiping cache of LVM-capable devices
Wiping internal VG cache
Reading all physical volumes. This may take a while...
Finding all volume groups
Finding volume group "system"
Found volume group "system" using metadata type lvm2

	
 The system LVM volume group has been found on the
 system. You can get more information about this volume with
 vgdisplay VOLUMEGROUPNAME
 (in our case VOLUMEGROUPNAME is
 system). You should activate this volume group to
 expose LVM partitions as devices so the system can mount them. Use
 vgchange:

root # vgchange -ay -v
Finding all volume groups
Finding volume group "system"
Found volume group "system"
activation/volume_list configuration setting not defined: Checking only
host tags for system/home
Creating system-home
Loading system-home table (254:0)
Resuming system-home (254:0)
Found volume group "system"
activation/volume_list configuration setting not defined: Checking only
host tags for system/root
Creating system-root
Loading system-root table (254:1)
Resuming system-root (254:1)
Found volume group "system"
activation/volume_list configuration setting not defined: Checking only
host tags for system/swap
Creating system-swap
Loading system-swap table (254:2)
Resuming system-swap (254:2)
Activated 3 logical volumes in volume group system
 3 logical volume(s) in volume group "system" now active

	
 All partitions in the volume group will be listed in the
 /dev/mapper directory. You can simply mount them
 now.

root # ls /dev/mapper/system-*
/dev/mapper/system-home /dev/mapper/system-root /dev/mapper/system-swap

root # mkdir /mnt/system-root
root # mount /dev/mapper/system-root /mnt/system-root

root # ls /mnt/system-root/
bin dev home lib64 mnt proc root sbin srv tmp var
boot etc lib lost+found opt read-write run selinux sys usr

Procedure 9. Unmounting Images Containing LVM
	
 Unmount all partitions (with umount)

root # umount /mnt/system-root

	
 Deactivate the LVM volume group (with vgchange -an
 VOLUMEGROUPNAME)

root # vgchange -an -v system
Using volume group(s) on command line
Finding volume group "system"
Found volume group "system"
Removing system-home (254:0)
Found volume group "system"
Removing system-root (254:1)
Found volume group "system"
Removing system-swap (254:2)
Deactivated 3 logical volumes in volume group system
0 logical volume(s) in volume group "system" now active

	
 Now you have two choices:

	
 In case of a qcow2 image, proceed as described in
 Step 2 (qemu-nbd -d
 /dev/nbd0).

	
 In case of a raw image, proceeds as described in
 Step 2 (kpartx -d
 /dev/loop1; losetup -d /dev/loop1).

Check for a Successful Unmount

 You should double-check that umounting succeeded by using a system
 command like losetup, qemu-nbd,
 mount or vgscan. If this is not the
 case you may have trouble using the VM Guest because its system image is
 used in different places.

File System Sharing

 You can access a host directory in the VM Guest using the
 filesystem element. In the following example we
 will share the /data/shared directory and mount it
 in the VM Guest. Note that the accessmode
 parameter only works with type='mount' for the
 QEMU/KVM drive (most other values for type are
 exclusively used for the LXC driver).

<filesystem type='mount'[image: 1] accessmode='mapped'[image: 2]>
 <source dir='/data/shared'[image: 3]>
 <target dir='shared'[image: 4]/>
</filesystem>
	[image: 1]
	
 A host directory to mount VM Guest.

	[image: 2]
	
 Access mode (the security mode) set to mapped
 will give access with the permissions of the hypervisor. Use
 passthrough to access this share with the
 permissions of the user inside the VM Guest.

	[image: 3]
	
 Path to share with the VM Guest.

	[image: 4]
	
 Name or label of the path for the mount command.

 To mount the shared directory on the VM Guest, use the
 following commands:
 Under the VM Guest now you need to mount the target
 dir='shared':

root # mkdir /opt/mnt_shared
root # mount shared -t 9p /opt/mnt_shared -o trans=virtio

 See
 libvirt
 File System and
 QEMU
 9psetup for more information.

VM Guest Configuration

Virtio Driver

 To increase VM Guest performance it is recommended to use paravirtualized
 drivers within the VM Guests. The virtualization standard for such drivers
 for KVM are the virtio drivers, which are designed for
 running in a virtual environment. Xen uses similar paravirtualized
 device drivers (like VMDP in a
 Windows* guest). For a better understanding of this topic, refer to the
 I/O
 Virtualization section in the official Virtualization Guide.

 virtio blk

virtio_blk is the virtio block device for disk. To use
 the virtio blk driver for a block device, specify the
 bus='virtio' attribute in the disk definition:

<disk type='....' device='disk'>

 <target dev='vda' bus='virtio'/>
</disk>
Disk Device Names
virtio disk devices are named
 /dev/vd[a-z][1-9]. If you migrate a Linux guest from a
 non-virtio disk you need to adjust the root= parameter
 in the GRUB configuration, and regenerate the initrd
 file. Otherwise the system cannot boot. On VM Guests with other
 operating systems, the boot loader may need to be adjusted or reinstalled
 accordingly, too.

 Using virtio Disks with
 qemu-system-ARCH

 When running qemu-system-ARCH, use the
 -drive option to add a disk to the VM Guest. See the
 Basic
 Installation with qemu-system-ARCH section in the official
 Virtualization guide for an example. The -hd[abcd]
 option will not work for virtio disks.

virtio net

virtio_net is the virtio network device. The
 kernel modules should be loaded automatically in the guest at boot
 time. You need to start the service to make the network available.

<interface type='network'>
 ...
 <model type='virtio' />
</interface>

virtio balloon

 The virtio balloon is used for host memory over-commits for guests. For
 Linux guests, the balloon driver runs in the guest kernel, whereas for
 Windows guests, the balloon driver is in the VMDP package.
 virtio_balloon is a PV driver to give or take
 memory from a VM Guest.

	Inflate balloon: Return memory from guest to
 host kernel (for KVM) or to hypervisor (for Xen)

	Deflate balloon: Guest will have more available
 memory

 It is controlled by the currentMemory and
 memory options.

<memory unit='KiB'>16777216</memory>
 <currentMemory unit='KiB'>1048576</currentMemory>
 [...]
 <devices>
 <memballoon model='virtio'/>
 </devices>

 You can also use virsh to change it:

tux > virsh setmem DOMAIN_IDMEMORY in KB

Checking virtio Presence

 You can check the virtio block PCI with:

tux > find /sys/devices/ -name virtio*
/sys/devices/pci0000:00/0000:00:06.0/virtio0
/sys/devices/pci0000:00/0000:00:07.0/virtio1
/sys/devices/pci0000:00/0000:00:08.0/virtio2

 To find the block device associated with vdX:

tux > find /sys/devices/ -name virtio* -print -exec ls {}/block 2>/dev/null \;
/sys/devices/pci0000:00/0000:00:06.0/virtio0
/sys/devices/pci0000:00/0000:00:07.0/virtio1
/sys/devices/pci0000:00/0000:00:08.0/virtio2
vda

 To get more information on the virtio block:

tux > udevadm info -p /sys/devices/pci0000:00/0000:00:08.0/virtio2
P: /devices/pci0000:00/0000:00:08.0/virtio2
E: DEVPATH=/devices/pci0000:00/0000:00:08.0/virtio2
E: DRIVER=virtio_blk
E: MODALIAS=virtio:d00000002v00001AF4
E: SUBSYSTEM=virtio

 To check all virtio drivers being used:

tux > find /sys/devices/ -name virtio* -print -exec ls -l {}/driver 2>/dev/null \;
/sys/devices/pci0000:00/0000:00:06.0/virtio0
lrwxrwxrwx 1 root root 0 Jun 17 15:48 /sys/devices/pci0000:00/0000:00:06.0/virtio0/driver -> ../../../../bus/virtio/drivers/virtio_console
/sys/devices/pci0000:00/0000:00:07.0/virtio1
lrwxrwxrwx 1 root root 0 Jun 17 15:47 /sys/devices/pci0000:00/0000:00:07.0/virtio1/driver -> ../../../../bus/virtio/drivers/virtio_balloon
/sys/devices/pci0000:00/0000:00:08.0/virtio2
lrwxrwxrwx 1 root root 0 Jun 17 14:35 /sys/devices/pci0000:00/0000:00:08.0/virtio2/driver -> ../../../../bus/virtio/drivers/virtio_blk

Find Device Driver Options

 Virtio devices and other drivers have various options. To list all of
 them, use the help parameter of
 theqemu-system-ARCH command.

tux > qemu-system-x86_64 -device virtio-net,help
virtio-net-pci.ioeventfd=on/off
virtio-net-pci.vectors=uint32
virtio-net-pci.indirect_desc=on/off
virtio-net-pci.event_idx=on/off
virtio-net-pci.any_layout=on/off
.....

Cirrus Video Driver

 To get 16-bit color, high compatibility and better performance it is
 recommended to use the cirrus video driver.

 libvirt

libvirt ignores the vram value because video size has
 been hardcoded in QEMU.

<video>
 <model type='cirrus' vram='9216' heads='1'/>
</video>

Better Entropy

 Virtio RNG (random number generator) is a paravirtualized device that is
 exposed as a hardware RNG device to the guest. On the host side, it can be
 wired up to one of several sources of entropy (including a real hardware
 RNG device and the host's /dev/random) if hardware
 support does not exist. The Linux kernel contains the guest driver for the
 device from version 2.6.26 and higher.

 The system entropy is collected from various non-deterministic hardware
 events and is mainly used by cryptographic applications. The virtual
 random number generator device (paravirtualized device) allows the host
 to pass through entropy to VM Guest operating systems. This results in
 a better entropy in the VM Guest.

 To use Virtio RNG, add an RNG device in
 virt-manager or directly in the VM Guest's XML
 configuration:

<devices>
 <rng model='virtio'>
 <backend model='random'>/dev/random</backend>
 </rng>
</devices>

 The host now should used /dev/random:

tux > lsof /dev/random
qemu-syst 4926 qemu 6r CHR 1,8 0t0 8199 /dev/random

 On the VM Guest, the source of entropy can be checked with:

tux > cat /sys/devices/virtual/misc/hw_random/rng_available

 The current device used for entropy can be checked with:

tux > cat /sys/devices/virtual/misc/hw_random/rng_current
virtio_rng.0

 You should install the rng-tools package on the
 VM Guest, enable the service, and start it. Under SLE12 do the
 following:

root # zypper in rng-tools
root # systemctl enable rng-tools
root # systemctl start rng-tools

Disable Unused Tools and Devices

 Per host, use one virtualization technology only. For example, do not
 use KVM and Containers on the same computer. Otherwise, you may find
 yourself with a reduced amount of available resources, increased
 security risk and a longer software update queue. Even when the amount
 of resources allocated to each of the technologies is configured
 carefully, the host may suffer from reduced overall availability and
 degraded performance.

 Minimize the amount of software and services available on hosts. Most
 default installations of operating systems are not optimized for VM
 usage. Install what you really need and remove all other components in
 the VM Guest.

 Windows* Guest:

	
 Disable the screen saver

	
 Remove all graphical effects

	
 Disable indexing of hard disks if not necessary

	
 Check the list of started services and disable the ones you do not
 need

	
 Check and remove all unneeded devices

	
 Disable system update if not needed, or configure it to avoid any
 delay while rebooting or shutting down the host

	
 Check the Firewall rules

	
 Schedule backups and anti-virus updates appropriately

	
 Install the
 VMDP
 paravirtualized driver for best performance

	
 Check the operating system recommendations, such as on the
 Microsoft
 Windows* 7 better performance Web page.

 Linux Guest:

	
 Remove or do not start the X Window System if not necessary

	
 Check the list of started services and disable the ones you do not
 need

	
 Check the OS recommendations for kernel parameters that enable better
 performance

	
 Only install software that you really need

	
 Optimize the scheduling of predictable tasks (system updates, hard
 disk checks, etc.)

Updating the Guest Machine Type

 QEMU machine types define details of the architecture that are
 particularly relevant for migration and session management. As changes or
 improvements to QEMU are made, new machine types are added. Old machine
 types are still supported for compatibility reasons, but to take advantage
 of improvements, we recommend to always migrate to the latest machine
 type when upgrading.

 Changing the guest's machine type for a Linux guest will mostly be
 transparent. For Windows* guests, we recommend to take a snapshot
 or backup of the guest—in case Windows* has issues with
 the changes it detects and subsequently the user decides to revert to
 the original machine type the guest was created with.

Changing the machine type

 Refer to the Virtualization guide section
 Change
 Machine Type for documentation.

VM Guest-Specific Configurations and Settings

ACPI Testing

 The ability to change a VM Guest's state heavily depends on the
 operating system. It is very important to test this feature before any use
 of your VM Guests in production. For example, most Linux operating systems
 disable this capability by default, so this requires you to enable this
 operation (mostly through PolKit).

 ACPI must be enabled in the guest for a graceful shutdown to work. To
 check if ACPI is enabled, run:

tux > virsh dumpxml VMNAME | grep acpi

 If nothing is printed, ACPI is not enabled for your machine. Use
 virsh edit to add the following XML under
 <domain>:

<features>
 <acpi/>
</features>

 If ACPI was enabled during a Windows Server* guest installation,
 it is not sufficient to turn it on in the VM Guest configuration only. For
 more information, see
 https://support.microsoft.com/en-us/kb/309283.

 Regardless of the VM Guest's configuration, a graceful shutdown is always
 possible from within the guest operating system.

Keyboard Layout

 Though it is possible to specify the keyboard layout from a
 qemu-system-ARCH command, it is recommended to
 configure it in the libvirt XML file. To change the keyboard
 layout while connecting to a remote VM Guest using vnc, you should edit
 the VM Guest XML configuration file.
 For example, to add an en-us keymap, add in the
 <devices> section:

<graphics type='vnc' port='-1' autoport='yes' keymap='en-us'/>

 Check the vncdisplay configuration and connect to your
 VM Guest:

tux > virsh vncdisplay sles12 127.0.0.1:0

Spice default listen URL

 If no network interface other than lo is assigned
 an IPv4 address on the host, the default address on which the spice server listens
 will not work. An error like the following one will occur:

tux > virsh start sles12
error: Failed to start domain sles12
error: internal error: process exited while connecting to monitor: ((null):26929): Spice-Warning **: reds.c:2330:reds_init_socket: getaddrinfo(127.0.0.1,5900): Address family for hostname not supported
2015-08-12T11:21:14.221634Z qemu-system-x86_64: failed to initialize spice server

 To fix this, you can change the default spice_listen
 value in /etc/libvirt/qemu.conf using the local IPv6
 address ::1. The spice server
 listening address can also be changed on a per VM Guest basis, use
 virsh edit to add the listen XML attribute to the
 graphics type='spice' element:

<graphics type='spice' listen='::1' autoport='yes'/>>

XML to QEMU command line

 Sometimes it could be useful to get the QEMU command line to launch the
 VM Guest from the XML file.

tux > virsh domxml-to-native[image: 1] qemu-argv[image: 2] SLE12.xml[image: 3]
	[image: 1]
	
 Convert the XML file in domain XML format to the native guest
 configuration

	[image: 2]
	
 For the QEMU/KVM hypervisor, the format argument needs be qemu-argv

	[image: 3]
	
 Domain XML file to use

tux > sudo virsh domxml-to-native qemu-argv /etc/libvirt/qemu/SLE12.xml
LC_ALL=C PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin \
 QEMU_AUDIO_DRV=none /usr/bin/qemu-system-x86_64 -name SLE12 -machine \
 pc-i440fx-2.3,accel=kvm,usb=off -cpu SandyBridge -m 4048 -realtime \
 mlock=off -smp 4,sockets=4,cores=1,threads=1 -uuid 8616d00f-5f05-4244-97cc-86aeaed8aea7 \
 -no-user-config -nodefaults -chardev socket,id=charmonitor,path=/var/lib/libvirt/qemu/SLE12.monitor,server,nowait \
 -mon chardev=charmonitor,id=monitor,mode=control -rtc base=utc,driftfix=slew \
 -global kvm-pit.lost_tick_policy=discard -no-hpet \
 -no-shutdown -global PIIX4_PM.disable_s3=1 -global PIIX4_PM.disable_s4=1 \
 -boot strict=on -device ich9-usb-ehci1,id=usb,bus=pci.0,addr=0x4.0x7 \
 -device ich9-usb-uhci1,masterbus=usb.0,firstport=0,bus=pci.0,multifunction=on,addr=0x4 \
 -device ich9-usb-uhci2,masterbus=usb.0,firstport=2,bus=pci.0,addr=0x4.0x1 \
 -device ich9-usb-uhci3,masterbus=usb.0,firstport=4,bus=pci.0,addr=0x4.0x2 \
 -drive file=/var/lib/libvirt/images/SLE12.qcow2,if=none,id=drive-virtio-disk0,format=qcow2,cache=none \
 -device virtio-blk-pci,scsi=off,bus=pci.0,addr=0x6,drive=drive-virtio-disk0,id=virtio-disk0,bootindex=2 \
 -drive if=none,id=drive-ide0-0-1,readonly=on,format=raw \
 -device ide-cd,bus=ide.0,unit=1,drive=drive-ide0-0-1,id=ide0-0-1 -netdev tap,id=hostnet0 \
 -device virtio-net-pci,netdev=hostnet0,id=net0,mac=52:54:00:28:04:a9,bus=pci.0,addr=0x3,bootindex=1 \
 -chardev pty,id=charserial0 -device isa-serial,chardev=charserial0,id=serial0 \
 -vnc 127.0.0.1:0 -device cirrus-vga,id=video0,bus=pci.0,addr=0x2 \
 -device virtio-balloon-pci,id=balloon0,bus=pci.0,addr=0x5 -msg timestamp=on

Change Kernel Parameters at Boot Time

SUSE Linux Enterprise 11

 To change the value for SLE 11 products at boot time, you need to
 modify your /boot/grub/menu.lst file by adding the
 OPTION=parameter. Then reboot your system.

SUSE Linux Enterprise 12

 To change the value for SLE 12 products at boot time, you need to
 modify your /etc/default/grub file. Find the
 variable starting with GRUB_CMDLINE_LINUX_DEFAULT and
 add at the end OPTION=parameter (or change it with the
 correct value if it is already available).

 Now you need to regenerate your grub2 configuration:

grub2-mkconfig -o /boot/grub2/grub.cfg

 Then reboot your system

Add a Device to an XML Configuration

 To create a new VM Guest based on an XML file, you can specify the QEMU
 command line using the special tag
 qemu:commandline. For example, to add a
 virtio-balloon-pci, add this block at the end of the XML configuration
 file (before the </domain> tag):

<qemu:commandline>
 <qemu:arg value='-device'/>
 <qemu:arg value='virtio-balloon-pci,id=balloon0'/>
</qemu:commandline>

Hypervisors Compared to Containers

Table 4. Hypervisors Compared to Containers
	

 Features

 	

 Hypervisors

 	

 Containers

	

 Technologies

 	

 Emulation of a physical computing environment

 	

 Use kernel host

	

 System layer level

 	

 Managed by a virtualization layer (Hypervisor)

 	

 Rely on kernel namespaces and cgroups

	

 Level (layer)

 	

 Hardware level

 	

 Software level

	

 Virtualization mode available

 	

 FV or PV

 	

 None, only user space

	

 Security

 	

 Strong

 	

 Warning: Security is very low

	

 Confinement

 	

 Full isolation

 	

 Warning: Host kernel (OS must be compatible with kernel version)

	

 Operating system

 	

 Any operating system

 	

 Only Linux (must be "kernel" compatible)

	

 Type of system

 	

 Full OS needed

 	

 Scope is an instance of Linux

	

 Boot time

 	

 Slow to start (OS delay)

 	

 Really quick start

	

 Overhead

 	

 High

 	

 Very low

	

 Efficiency

 	

 Depends on OS

 	

 Very efficient

	

 Sharing with host

 	

 Warning: Complex because of isolation

 	

 Sharing is easy (host sees everything; container sees its own
 objects)

	

 Migration

 	

 Supports migration (live mode)

 	

 Warning: Not possible

Getting the Best of Both Worlds

 Even if the above table seems to indicate that running a single
 application in a highly secure way is not possible, virt-sandbox
 will allow running a single application in a KVM guest, starting with SUSE Linux Enterprise Server 12
 SP1. virt-sandbox bootstraps
 any command within a Linux kernel with a minimal root file system.

 The guest root file system can either be the root file system mounted
 read-only or a disk image. The following steps will show how to set up a
 sandbox with qcow2 disk image as root file system.

	
 Create the disk image using qemu-img:

root # qemu-img create -f qcow2 rootfs.qcow2 6G

	
 Format the disk image:

root # modprobe nbd[image: 1]root # /usr/bin/qemu-nbd --format qcow2 -n -c /dev/nbd0 $PWD/test-base.qcow2[image: 2]root # mkfs.ext3 /dev/nbd0[image: 3]
	[image: 1]
	
 Make sure the nbd module is loaded: it is not loaded by default and
 will only be used to format the qcow image.

	[image: 2]
	
 Create an NBD device for the qcow2 image. This device will then
 behave like any other block device. The example uses
 /dev/nbd0 but any other free NBD device
 will work.

	[image: 3]
	
 Format the disk image directly. Note that no partition table has
 been created: virt-sandbox considers the image to
 be a partition, not a disk.

 The partition formats that can be used are limited: the Linux kernel
 bootstrapping the sandbox needs to have the corresponding features
 built in. The Ext4 module is also available at the sandbox start-up
 time.

	
 Now populate the newly formatted image:

root # guestmount -a base.qcow2 -m /dev/sda:/ /mnt[image: 1]root # zypper --root /mnt ar cd:///?devices=/dev/dvd SLES12_DVD
root # zypper --root /mnt in -t pattern Minimal[image: 2]root # guestunmount /mnt[image: 3]
	[image: 1]
	
 Mount the qcow2 image using the guestfs tools.

	[image: 2]
	
 Use Zypper with the --root parameter to add a SUSE Linux Enterprise Server
 repository and install the Minimal pattern in the
 disk image. Any additional package or configuration change should be
 performed in this step.

Using backing chains

 To share the root file system between several sandboxes, create qcow2
 images with a common disk image as backing chain as described in
 Section “Overlay Disk Images”.

	[image: 3]
	
 Unmount the qcow2 image.

	
 Run the sandbox, using virt-sandbox. This command has
 many interesting options, read its man page to discover them all. The
 command can be run as root or as an unprivileged user.

root # virt-sandbox -n NAME \
 -m host-image:/=$PWD/rootfs.qcow2 \ [image: 1]
 -m host-bind:/srv/www=/guests/www \ [image: 2]
 -m ram:/tmp=100MiB \
 -m ram:/run=100MiB \ [image: 3]
 -N source=default,address=192.168.122.12/24 \ [image: 4]
 -- \
 /bin/sh
	[image: 1]
	
 Mount the created disk image as the root file system. Note that
 without any image being mounted as /, the host
 root file system is read-only mounted as the guest one.

 The host-image mount is not reserved for the root file system, it
 can be used to mount any disk image anywhere in the guest.

	[image: 2]
	
 The host-bind mount is pretty convenient for sharing files and
 directories between the host and the guest. In this example the host
 directory /guests/www is mounted as
 /srv/www in the sandbox.

	[image: 3]
	
 The RAM mounts are defining tmpfs mounts in the
 sandbox.

	[image: 4]
	
 The network uses a network defined in libvirt. When running as an
 unprivileged user, the source can be omitted, and the KVM user
 networking feature will be used. Using this option requires the
 dhcp-client and iproute2
 packages, which are part of the SUSE Linux Enterprise Server Minimal
 pattern.

Xen: Converting a Paravirtual (PV) Guest to a Fully Virtual (FV/HVM) Guest

 This chapter explains how to convert a Xen paravirtual machine into a
 Xen fully virtualized machine.

Procedure 10. Guest Side

 In order to start the guest in FV mode, you have to run the following steps inside the guest.

	
 Prior to converting the guest, apply all pending patches and reboot the guest.

	
 FV machines use the -default kernel. If this kernel is not
 already installed, install the kernel-default package
 (while running in PV mode).

	
 PV machines typically use disk names such as vda*. These names
 must be changed to the FV hd* syntax. This change must be done
 in the following files:

	
 /etc/fstab

	/boot/grub/menu.lst (SLES11 only)

	
 /boot/grub*/device.map

	
 /etc/sysconfig/bootloader

	/etc/default/grub (SLES12 only)

Prefer UUIDs

 You should use UUIDs or logical volumes within your
 /etc/fstab. Using UUID simplifies using attached network
 storage, multipathing, and virtualization. To find the UUID of your disk use the command
 blkid.

	
 To avoid any error regenerating the initrd with the needed modules you can create a symlink
 from /dev/hda2 to /dev/xvda2 etc. by using the ln:

ln -sf /dev/xvda2 /dev/hda2
ln -sf /dev/xvda1 /dev/hda1
.....

	
 PV and FV machines use different disk and network driver modules. These FV modules
 must be added to the initrd manually. The expected modules are
 xen-vbd (for disk) and xen-vnif (for network).
 These are the only PV drivers for a fully virtualized VM Guest. All other modules,
 such as ata_piix, ata_generic and
 libata, should be added automatically.

Adding Modules to the initrd
	
 On SLES 11, you can add modules to the
 INITRD_MODULES line in the
 /etc/sysconfig/kernel file. For example:

INITRD_MODULES="xen-vbd xen-vnif"

 Run mkinitrd to build a new initrd containing the
 modules.

	
 On SLES 12, open or create
 /etc/dracut.conf.d/10-virt.conf and add the
 modules with force_drivers by adding a line as
 in the example below (mind the leading whitespace):

force_drivers+=" xen-vbd xen-vnif"

 Run dracut -f --kver
 KERNEL_VERSION-default to
 build a new initrd (for the -default version of the kernel) which
 contains the required modules.

Find your Kernel version
Use the uname -r command to get the current version used on your system.

	
 Before shutting down the guest, set the default boot parameter to the
 -default kernel using yast bootloader.

	Under SUSE Linux Enterprise Server 11, if you have an X server running on your guest, you need to
adjust the /etc/X11/xorg.conf file to adjust the X driver. Search for
fbdev and change to cirrus.

Section "Device"
 Driver "cirrus"

 EndSection
SUSE Linux Enterprise Server 12 and Xorg
Under SUSE Linux Enterprise Server 12, Xorg will automatically adjust the driver needed to be able to get a working X server.

	
 Shut down the guest.

Procedure 11. Host Side

 The following steps explain the action you have to do on the host.

	
 To start the guest in FV mode, the configuration of the VM must be modified
 to match an FV configuration. Editing the configuration of the VM can easily be done
 using virsh edit [DOMAIN]. The following changes are recommended:

	
 Make sure the machine, the type and the loader entries in the OS section are changed from xenpv to
 xenfv. The updated OS section should look similar to:

<os>
 <type arch='x86_64' machine='xenfv'>hvm</type>
 <loader>/usr/lib/xen/boot/hvmloader</loader>
 <boot dev='hd'/>
</os>

	In the OS section remove anything which is specific to PV guest:
	<bootloader>pygrub</bootloader>

	<kernel>/usr/lib/grub2/x86_64-xen/grub.xen</kernel>

	<cmdline>xen-fbfront.video=4,1024,768</cmdline>

	
 In the devices section, add the qemu emulator as:

<emulator>/usr/lib/xen/bin/qemu-system-i386</emulator>

	
 Update the disk configuration so the target device and bus use the FV syntax.
 This requires replacing the xen disk bus with ide,
 and the vda target device with hda. The changes
 should look similar to:

<target dev='hda' bus='ide'/>

	
 Change the bus for the mouse and keyboard from xen to ps2.
 Also add a new USB tablet device:

<input type='mouse' bus='ps2'/>
 <input type='keyboard' bus='ps2'/>
<input type='tablet' bus='usb'/>

	
 Change the console target type from xen to serial:

<console type='pty'>
 <target type='serial' port='0'/>
</console>

	
 Change the video configuration from xen to cirrus,
 with 8M of VRAM:

<video>
 <model type='cirrus' vram='8192' heads='1' primary='yes'/>
</video>

	
 If desired, add acpi and apic to the features of the VM:

<features>
 <acpi/>
 <apic/>
</features>

	
 Start the guest (using virsh or virt-manager). If the guest
 is running kernel-default (as verified through uname -a), the machine is running
 in Fully Virtual mode.

guestfs-tools

 To script this process, or work on disk images directly, you
 can use the guestfs-tools
 suite. Numerous tools exist there to help modify disk images.

External References

	
 Increasing
 memory density using KSM

	
 linux-kvm.org
 KSM

	
 KSM's
 kernel documentation

	
 ksm - dynamic page
 sharing driver for linux v4

	
 Memory
 Ballooning

	
 libvirt
 virtio

	
 CFQ's
 kernel documentation

	
 Documentation
 for sysctl

	
 LWN Random
 Number

	
 KVM / Xen
 tweaks

	
 Dr.
 Khoa Huynh, IBM Linux Technology Center

	
 Kernel
 Parameters

	
 Huge pages
 Administration (Mel Gorman)

	
 kernel
 hugetlbpage

OEBPS/static/images/13.png

OEBPS/static/images/14.png

OEBPS/static/images/15.png

OEBPS/static/images/16.png

OEBPS/static/images/17.png

OEBPS/static/images/18.png

OEBPS/static/images/19.png

OEBPS/static/images/8.png

OEBPS/static/images/9.png

OEBPS/static/images/6.png

OEBPS/static/images/7.png

OEBPS/static/images/20.png

OEBPS/static/images/21.png

OEBPS/static/images/22.png

OEBPS/static/images/23.png

OEBPS/static/images/1.png

OEBPS/static/images/4.png

OEBPS/static/images/5.png

OEBPS/static/images/2.png

OEBPS/static/images/3.png

OEBPS/qemu-img-overlay.png
Overlay Files
(only contains difference from base image)

mmmmm e e e e e e e e e — oo oo sle12_updated.gcow2

Base Image

sle12_kemel.qcow2

sle12_base.img

Overlay on an overlay

Rebase on the original image

OEBPS/static/images/24.png

OEBPS/static/images/25.png

OEBPS/static/images/26.png

OEBPS/static/images/27.png

OEBPS/static/images/28.png

OEBPS/static/images/29.png

OEBPS/static/images/30.png

OEBPS/static/images/10.png

OEBPS/static/images/11.png

OEBPS/static/images/12.png

