15.3 Virtual Memory Manager (VM) Tunable Parameters

When tuning the VM it should be understood that some of the changes will take time to affect the workload and take full effect. If the workload changes throughout the day, it may behave very differently at different times. A change that increases throughput under some conditions may decrease it under other conditions.

15.3.1 Reclaim Ratios


This control is used to define how aggressively the kernel swaps out anonymous memory relative to pagecache and other caches. Increasing the value increases the amount of swapping. The default value is 60.

Swap I/O tends to be much less efficient than other I/O. However, some pagecache pages will be accessed much more frequently than less used anonymous memory. The right balance should be found here.

If swap activity is observed during slowdowns, it may be worth reducing this parameter. If there is a lot of I/O activity and the amount of pagecache in the system is rather small, or if there are large dormant applications running, increasing this value might improve performance.

Note that the more data is swapped out, the longer the system will take to swap data back in when it is needed.


This variable controls the tendency of the kernel to reclaim the memory which is used for caching of VFS caches, versus pagecache and swap. Increasing this value increases the rate at which VFS caches are reclaimed.

It is difficult to know when this should be changed, other than by experimentation. The slabtop command (part of the package procps) shows top memory objects used by the kernel. The vfs caches are the "dentry" and the "*_inode_cache" objects. If these are consuming a large amount of memory in relation to pagecache, it may be worth trying to increase pressure. Could also help to reduce swapping. The default value is 100.


This controls the amount of memory that is kept free for use by special reserves including atomic allocations (those which cannot wait for reclaim). This should not normally be lowered unless the system is being very carefully tuned for memory usage (normally useful for embedded rather than server applications). If page allocation failure messages and stack traces are frequently seen in logs, min_free_kbytes could be increased until the errors disappear. There is no need for concern, if these messages are very infrequent. The default value depends on the amount of RAM.

15.3.2 Writeback Parameters

One important change in writeback behavior since openSUSE 10 is that modification to file-backed mmap() memory is accounted immediately as dirty memory (and subject to writeback). Whereas previously it would only be subject to writeback after it was unmapped, upon an msync() system call, or under heavy memory pressure.

Some applications do not expect mmap modifications to be subject to such writeback behavior, and performance can be reduced. Berkeley DB (and applications using it) is one known example that can cause problems. Increasing writeback ratios and times can improve this type of slowdown.


This is the percentage of the total amount of free and reclaimable memory. When the amount of dirty pagecache exceeds this percentage, writeback threads start writing back dirty memory. The default value is 10 (%).


Similar percentage value as above. When this is exceeded, applications that want to write to the pagecache are blocked and start performing writeback as well. The default value is 40 (%).

These two values together determine the pagecache writeback behavior. If these values are increased, more dirty memory is kept in the system for a longer time. With more dirty memory allowed in the system, the chance to improve throughput by avoiding writeback I/O and to submitting more optimal I/O patterns increases. However, more dirty memory can either harm latency when memory needs to be reclaimed or at data integrity (sync) points when it needs to be written back to disk.

15.3.3 Readahead parameters


If one or more processes are sequentially reading a file, the kernel reads some data in advance (ahead) in order to reduce the amount of time that processes have to wait for data to be available. The actual amount of data being read in advance is computed dynamically, based on how much "sequential" the I/O seems to be. This parameter sets the maximum amount of data that the kernel reads ahead for a single file. If you observe that large sequential reads from a file are not fast enough, you can try increasing this value. Increasing it too far may result in readahead thrashing where pagecache used for readahead is reclaimed before it can be used, or slowdowns due to a large amount of useless I/O. The default value is 512 (kb).

15.3.4 Further VM Parameters

For the complete list of the VM tunable parameters, see /usr/src/linux/Documentation/sysctl/vm.txt (available after having installed the kernel-source package).