
Why Kubernetes?
A Deep Dive in Options, Benefits and Use Cases

Bettina Bassermann
Solution Sales Specialist DevOps
Bettina.Bassermann@suse.com

Rania Mohamed
Solution Architect, Services Consulting
Rania.Mohamed@suse.com

2

Who is SUSE?

• Founded in 1992

• Largest independent open source vendor as of
March 2019

• Technology company

• Our Mission is to help customers to master the
digital transformation through Open Source
technology

• Innovating with Partners and communites

• Enterprise-Grade Support

3

Series about modern Application Development

• Software Development, Microservices & Container Management,

 a SUSE webinar series on modern Application Development

• Please find all SUSE Webinars here

https://www.suse.com/de-de/events/webinars

https://www.suse.com/c/author/rasadus/

Microservices –
Is it the Holy

Grain? A
Perspective of a

Developer

Container and
Cloud Native

Technologies –
Why do we need
them and what is
so great about it?

Why Kubernetes?
A Deep Dive in

Options, Benefits
and Usecasese

About making
Choices –

CaaSPv4 as
SUSE‘s

empowering of
Kubernetes

....stay tuned for the 2020 sessions with the Chamelion

4

Agenda

• Kubernetes evolution

• Kubernetes Architecture

• Kubernetes Components

• Deep Dive in Kubernetes Network component

• Deep Dive in Kubernetes container engine component

• Deep Dive in monitoring component

• Deep Dive in Kubernetes service Mesh Component

• Kubernetes Usecases

55

Borg
System

Omega
cluster

manageme
nt system

K8s (OS of
Borg) –

start of K8s
community

Kube v1.0
CNCF
K8s

ecosystem

Helm
MiniKube

Kops
Kubeadm
Pokémon
Windows
support

OpenAPI

Go Ent.
RBAC

dynamic
prov.
Istio

API Agg.
GitHub
Certs

Kubeflow

Kubelet
TLS

Bootstrapping
Gardener

Google
Anthos and

more

Basics about Kubernetes
History/Evolution of the Kubernetes

6

2003-
2004

2013 2014 2015 2016 2017 2018 2019

7

Kubernetes Architecture

Kubernetes Architecture – Main Soln Design
Principles
• API Centric

• Separation of concerns divide and
conquer

• Pluggability

• Flexibility

• Well-defined State management
following MSA

• Extensibility

• Scalability

• Automation

• Simplicity

• Standardization

• Design for failure

• PaaS

• Repeatability reconstructable by

observation.

• Self-healing

• Implements Event processing and even
complex event processing

• Graceful degradation

• Target autonomous

• Manage dependencies

• Transparency

• Design API by SLO rather than
implementation

• High Availability

• Multi-tenancy

• Decentralizing more distributed
8

Kubernetes Architecture – Main Target
Requirements

• Orchestrate & Manage Containers

• Handle Variable load efficiently

• Enable integration with external world

• Enable apps/workloads integration

• Enable business continuity

• Support running distributed apps/workload
and MSA

• Enable hybrid/multi-cloud

• Enable CNA development

• Support/offer DevOps

• Support of pushing workload updates with
no disruption, ex blue-green

• Enable Modernization

• Enable 12factor development BP

• Enable integration with marketplace

• Workloads Log aggregation and
analytics

• Enable ease of monitoring distributed
workloads and gathering data

• Enable service discovery for the running
workloads

• Enabling load balancing between
workload instances

• Enable authentication and authorization
for the workload

Build and facilitate enterprise environment for containers (same as an
application server does for a Java app) 9

Kubernetes Architecture - Blueprint

10

11

Kubernetes Components &
Objects

Kubernetes Components

12

• Kube-
DNS

• CoreDNS
KubeVirt • Prometheus

• Metrics Server

• fluentd
• Logrotate
• Elastic/ELK Stack

• Dashboard
• Weave Scope

• Calico
• Cilium
• Flannel
• Canal
• CNI-Genie
• Multus
• Weave

Net
• Romana
• Knitter
• Istio
• …..

coreDNS
Hazelcast

Service Mesh can play in delivering any of the plugins as well as building new
ones

Kubernetes Objects – Main

• Node – a machine running in the cluster

• Pod – smallest deployable unit, may have 1+ containers

• ReplicaSet – defines number of running instances of a pod

• Service – defines access to one or more workload API (types: ClusterIP, NodePort &
LoadBalancer) sub-objects: svc, endpoint, iptables and IPVS

• Volume – storage of a container (supporting stateful workloads) sub-objects: PV
and PVC and StorageClass

• Namespace – resources grouping

• Deployment – declarative packaging of a set of pods and services

• DaemonSet – run a pod instance on all nodes

• StatefulSet – manages Pods that are based on stateful workloads.

• Job – creates one or more Pods / service.

• Ingress – manages external access to the services in a cluster 13

14

Deep Diving in Kubernetes
world

15

Network Component(s)

Network Component –Main Target Requirements

• Pods can communicate without using NAT

• Nodes can communicate with any pod
without using NAT

• Pod internal IP is always seen by the same
no matter the angle

• MSA Gateway (controlling routing)

• Securing communication between workloads
using policies

• Ability to use different network layer (2, 7, 3
and 4) isolation

• Ability to mix and match different network
policies

• Standardize network communication with
container engine, kube api server and
other nodes/pods CNI plugins

K8s doesn’t provide any default network implementation, It is a plugin
Aim to support secured multi-tenancy 16

Network Component – a comparison

17

Feature Flannel Calico Multus Cilium Weave Net

Brief
features

- Simple
- Flat/overlay network
- Each pod has unique ip,

all pods run on the same
network

- Runs a daemon process
flannel to update the ip
routing table

- Mapping of the subnet
to host info stored in
etcd

- Connects pods using the
same IP networking
principles as the internet

- Interoperable
- Flexible
- Enable security

enforcement (self
workload firewall)

- True Cloud native
scalability

- leverage best practice
cloud-native design
patterns

- Enables hybrid soln using
BGP

- It enables
attaching multiple
network interfaces
to the pods by
creating homed
pod, it is magic

- It is a meta-plugin
- It highly support

multitenancy

- Supports MSA & CNA
- It works by network policies
- Supports lightweight protocols, such

as HTTP, gRPC, Kafka
- It is an API-aware network security

filtering.
- It uses Linux kernel technology called

BPF
- Simple
- Efficient
- Enables building gateway policies

which can be enforced network-layer
and application-layer security policies

- Scalability
- Multi-tenancy
- L3 Encryption enforcement

- Creates a mesh overlay
network between each
of the nodes in the
cluster

- Flexible in the
communication

- Simple
- Enables service

discovery using micro
DNS

- Encryption
- Supports multi-cast
- Enables portability

Net.
Layering

L3 network fabric L3 & 7 N/A L3 & 7 L3

Stability Very high Very high High High

Service
meshing

Doesn’t integrate and
doesn’t allow any network
policy implementation

Integrates and enables
defining rich network policy
models

N/A Integrates and enables defining rich
network policy models

No

Gateways? No Yes N/A Yes Yes

Perf. Good Very Good N/A Very Good Very Good

Flannel

18

Network Component – a comparison

19

Feature Flannel Calico Multus Cilium Weave Net

Brief
features

- Simple
- Flat/overlay network
- Each pod has unique ip,

all pods run on the same
network

- Runs a daemon process
flannel to update the ip
routing table

- Mapping of the subnet
to host info stored in
etcd

- Connects pods using the
same IP networking
principles as the internet

- Interoperable
- Flexible
- Enable security

enforcement (self
workload firewall)

- True Cloud native
scalability

- leverage best practice
cloud-native design
patterns

- Enables hybrid soln using
BGP

- It enables
attaching multiple
network interfaces
to the pods by
creating homed
pod, it is magic

- It is a meta-plugin
- It highly support

multitenancy

- Supports MSA & CNA
- It works by network policies
- Supports lightweight protocols, such

as HTTP, gRPC, Kafka
- It is an API-aware network security

filtering.
- It uses Linux kernel technology called

BPF
- Simple
- Efficient
- Enables building gateway policies

which can be enforced network-layer
and application-layer security policies

- Scalability
- Multi-tenancy
- L3 Encryption enforcement

- Creates a mesh overlay
network between each
of the nodes in the
cluster

- Flexible in the
communication

- Simple
- Enables service

discovery using micro
DNS

- Encryption
- Supports multi-cast
- Enables portability

Net.
Layering

L3 network fabric L3 & 7 N/A L3 & 7 L3

Stability Very high Very high High High

Service
meshing

Doesn’t integrate and
doesn’t allow any network
policy implementation

Integrates and enables
defining rich network policy
models

N/A Integrates and enables defining rich
network policy models

No

Gateways? No Yes N/A Yes Yes

Perf. Good Very Good N/A Very Good Very Good

Calico

20

Network Component – a comparison

21

Feature Flannel Calico Multus Cilium Weave Net

Brief
features

- Simple
- Flat/overlay network
- Each pod has unique ip,

all pods run on the same
network

- Runs a daemon process
flannel to update the ip
routing table

- Mapping of the subnet
to host info stored in
etcd

- Connects pods using the
same IP networking
principles as the internet

- Interoperable
- Flexible
- Enable security

enforcement (self
workload firewall)

- True Cloud native
scalability

- leverage best practice
cloud-native design
patterns

- Enables hybrid soln using
BGP

- It enables
attaching multiple
network interfaces
to the pods by
creating homed
pod, it is magic

- It is a meta-plugin
- It highly support

multitenancy

- Supports MSA & CNA
- It works by network policies
- Supports lightweight protocols, such

as HTTP, gRPC, Kafka
- It is an API-aware network security

filtering.
- It uses Linux kernel technology called

BPF
- Simple
- Efficient
- Enables building gateway policies

which can be enforced network-layer
and application-layer security policies

- Scalability
- Multi-tenancy
- L3 Encryption enforcement

- Creates a mesh overlay
network between each
of the nodes in the
cluster

- Flexible in the
communication

- Simple
- Enables service

discovery using micro
DNS

- Encryption
- Supports multi-cast
- Enables portability

Net.
Layering

L3 network fabric L3 & 7 N/A L3 & 7 L3

Stability Very high Very high High High

Service
meshing

Doesn’t integrate and
doesn’t allow any network
policy implementation

Integrates and enables
defining rich network policy
models

N/A Integrates and enables defining rich
network policy models

No

Gateways? No Yes N/A Yes Yes

Perf. Good Very Good N/A Very Good Very Good

Multus

22

Network Component – a comparison

23

Feature Flannel Calico Multus Cilium Weave Net

Brief
features

- Simple
- Flat/overlay network
- Each pod has unique ip,

all pods run on the same
network

- Runs a daemon process
flannel to update the ip
routing table

- Mapping of the subnet
to host info stored in
etcd

- Connects pods using the
same IP networking
principles as the internet

- Interoperable
- Flexible
- Enable security

enforcement (self
workload firewall)

- True Cloud native
scalability

- leverage best practice
cloud-native design
patterns

- Enables hybrid soln using
BGP

- It enables
attaching multiple
network interfaces
to the pods by
creating homed
pod, it is magic

- It is a meta-plugin
- It highly support

multitenancy

- Supports MSA & CNA
- It works by network policies
- Supports lightweight protocols, such

as HTTP, gRPC, Kafka
- It is an API-aware network security

filtering.
- It uses Linux kernel technology called

BPF
- Simple
- Efficient
- Enables building gateway policies

which can be enforced network-layer
and application-layer security policies

- Scalability
- Multi-tenancy
- L3 Encryption enforcement

- Creates a mesh overlay
network between each
of the nodes in the
cluster

- Flexible in the
communication

- Simple
- Enables service

discovery using micro
DNS

- Encryption
- Supports multi-cast
- Enables portability

Net.
Layering

L3 network fabric L3 & 7 N/A L3 & 7 L3

Stability Very high Very high High High

Service
meshing

Doesn’t integrate and
doesn’t allow any network
policy implementation

Integrates and enables
defining rich network policy
models

N/A Integrates and enables defining rich
network policy models

No

Gateways? No Yes N/A Yes Yes

Perf. Good Very Good N/A Very Good Very Good

Cilium

24

Network Component – a comparison

25

Feature Flannel Calico Multus Cilium Weave Net

Brief
features

- Simple
- Flat/overlay network
- Each pod has unique ip,

all pods run on the same
network

- Runs a daemon process
flannel to update the ip
routing table

- Mapping of the subnet
to host info stored in
etcd

- Connects pods using the
same IP networking
principles as the internet

- Interoperable
- Flexible
- Enable security

enforcement (self
workload firewall)

- True Cloud native
scalability

- leverage best practice
cloud-native design
patterns

- Enables hybrid soln using
BGP

- It enables
attaching multiple
network interfaces
to the pods by
creating homed
pod, it is magic

- It is a meta-plugin
- It highly support

multitenancy

- Supports MSA & CNA
- It works by network policies
- Supports lightweight protocols, such

as HTTP, gRPC, Kafka
- It is an API-aware network security

filtering.
- It uses Linux kernel technology called

BPF
- Simple
- Efficient
- Enables building gateway policies

which can be enforced network-layer
and application-layer security policies

- Scalability
- Multi-tenancy
- L3 Encryption enforcement

- Creates a mesh overlay
network between each
of the nodes in the
cluster

- Flexible in the
communication

- Simple
- Enables service

discovery using micro
DNS

- Encryption
- Supports multi-cast
- Enables portability

Net.
Layering

L3 network fabric L3 & 7 N/A L3 & 7 L3

Stability Very high Very high High High

Service
meshing

Doesn’t integrate and
doesn’t allow any network
policy implementation

Integrates and enables
defining rich network policy
models

N/A Integrates and enables defining rich
network policy models

No

Gateways? No Yes N/A Yes Yes

Perf. Good Very Good N/A Very Good Very Good

26

Container Component(s)

Container Runtime Component – Main Target
Requirements

• Standardize the communication with Container engine, Container Runtime Interface CRI.

• Manages the namespace isolation and resource allocation at the OS levels using Linus
cgroup and namespaces

• Creates & build a container using an Image

• It the runtime the container run above

• Abstract the container from the hosting OS

• Integrates with image registry

• Supports High level and low level container runtime

• Manages containers’ lifecycle

• Support both running stateful (storage is a must here) and stateless containers

• Support logging and troubleshooting of a running container

27

Container Runtime Component – a comparison

28

Feature RunC Rkt CRI-O Docker Containerd

Brief
features

- Low-level container
runtime

- Implements OCI
- Requires expertise of

the underlying host OS
and configuration.

- Does not verify
container images or
prepare the FS

- No centralized daemon

- High level container
engine

- Built as an alternative to
docker in K8s

- Can group
containers/apps in a
shared context (pod)

- No centralized init
daemon

- Support different
container/pod
configurations (like
isolation parameters)

- Better isolation Each pod
runs in a different
process

- Supports OCI

- High level container engine
- support OCI and implements

CRI
- It uses runC by default
- Can plug any OCI runtime
- Light weight (lots of small

components, with defined roles
& collaborating flows)

- Decentralized architecture
- Secured by as CRI-O containers

are children of the process that
spawned it

- Fully compatible with K8s
Roadmap and community

- Implements CNI which make it
more standard from a network
setup

- Fast
- Can run Docker images

- Not Standard
- Heavyweight/fat daemon
- Central architecture
- Has security constraints
- Has no limitation

- Runs as a daemon
- Implements CRI

Security Yes Yes Yes No No

Perf. Good Very Good Very Good Very Good Very Good

Standard Yes Yes Yes No Yes

Stability Very high High Very High Very high High

rkt

29

containerd

30

CRIO

31

Container engine vs Containers Orchestrator

32

33

Monitoring Component(s)

Monitoring Component – Main Target
Requirements

• Monitor both cluster metrics as well as app/workload metrics

• Monitor the health of the cluster

• Monitor resources consumptions/utilization (node & pods)

• Availability (node and K8s objects)

• Gather k8s, apps and container metrics

34

Monitoring Component – solutions

35

Heapster, InfluxDB,
& Grafana

Prometheus &
Grafana

Heapster & ELK Stack Datadog Dynatrace

- Heapster, is a
uniform platform
which push
monitoring metrics
to a external tool to
process

- InfluxDB is used to
store the collected
metrics

- Grafana is used to
visualize the
collected info

- Simple

- Prometheus is a
platform to gather
metrics

- Grafana is used to
visualize the
collected info

- Simple
- Flexible

- Heapster, is a uniform
platform which push
monitoring metrics to a
external tool to process

- Use ELK or Ealstic stack
which includes
Elasticsearch, Logstash,
and Kibana, which define
the data pipeline.

- Central logging and
dashboard and can hold
some sort of analytics on
the gathered data.

- Powerful in analytics
- Flexible

- Simple
- Flexible data

pipeline
- Uses DaemonSet

agent

- Uses DaemonSet
agent

- Not flexible in the
gather metrics

- complex

36

Service Mesh / Service
Collaboration Component(s)

Service Mesh / Service Collaboration Component

What is Service
Mesh?

37

Service Mesh / Service Collaboration Component
– main challenges be4 service mesh

• MSA is small and fabulous but hard to control, watch and govern

• CNA is awesome but hard to troubleshoot

• MSA and CNA is about hybrid development and agility targeting time to
market so how to balance that keeping the aspects of governance &
quality hard balance

• Security

• Monitoring

• Managing dependencies

38

Service Mesh / Service Collaboration Component
– target requirements

• Services or app must be self:

• Governed – follow all policies and notify/get notified for changes.

• Secured – not only the 2 authes but ability to defend itself

• Monitored – metrics gathering

• Logging – metrics gathering

• Gateway (service/app discovery)

• Not compromising to the freedom of the developer

• Must be FAST and lightweight

• Observer and enforcer and not just an reactor

• Supports well known protocols as HTTP2, gRPC …

39
It is just like Aspect Oriented Programming, AOP and IoC, Injection and

Inversion of Controller

Service Mesh / Service Collaboration Component
– available Service Mesh FWs

• Istio, super powerful implementation it uses envoy as a data plane,
think of it as an extension.

• Google Service Mesh, it uses Istio but with more visualization
capabilities and troubleshooting

• AWS app Mesh, it uses envoy it only provides parts of the requirements
as the proxying and the monitoring metrics

• Envoy, it only focus on the data more than the control (i.e. what to do
with the data)

• Azure Service Mesh, it is fully built by Microsoft, it covers most of the
requirements

40

Service Mesh / Service Collaboration Component
– More into Service Mesh – Istio & Envoy

41

Service mesh works on the network packet level so it is an INF layer still
Sidecars are always stateless

Data Plane (mainly gathering data
transforming or converting it to

events and forward it):
1. The 2 authes
2. Service discovery
3. Monitoring metrics and Health

checking
4. Load balancing and Routing
5. Observation to any metrics or

events
6. Enables lots of MSA patterns

such as Circuit breakers
7. K8s and CNA/MSA deployment

strategies

Service Mesh / Service Collaboration Component
– More into Service Mesh – Istio & Envoy

Is it Enough?

42

Service Mesh / Service Collaboration Component
– More into Service Mesh – Istio & Envoy

43

Data Plane is Magic as it provides network abstraction and still works on fact
but it is not enough it still require and a fairy and their magical wands

Enforces access control
Enforces policies (app level)
Gather Telemetric metrics for consumption calc.

service
discovery
Deployment
strategies
Traffic mgmt
Resiliency

Service and end user authentication, it can be
enforce identity based encryption

Istio Config controller (validator, processor, distributor…)

44

Kubernetes UseCase

Multi/Hybrid – Cloud

https://www.suse.com/c/cloud-native-applications-in-azure-supporting-hybrid-cloud/

Business Benefits Multicloud
• Elasticity/scalability

 Pay as you grow/On-demand availability

 cost effective and scalable

• More vendor agnostic/ higher flexibility

• Speed

 accelerate time to market

• Innovation (due to competition in Cloud)

• vast variety of different services (IaaS, SaaS, PaaS)

• Cloudmanagement and optimization increase enhancements in the process

• Greater Choice enables better cost control BUT danger of Cloud Sprawl
and need for a „single pane of glass“ to prevent Sprawl

46

DevOps

Automotive Usecase – Connected Car

https://www.suse.com/c/highly-automated-and-secured-multi-tenancy-using-suse-caas-platform-4/

Business Benefits DevOps

• Managing services not „IT assests“ – business driven

• Faster delivery of features or improvents in the sw

• Improved communication and collaboration

• More time to innovate

• Happier and more productive teams

• Faster recovery from incidents

• Lower change failure rate (due to smaller components to oversee)

• Results in increased Customer Satisfaction

• Faster revenue generation

• Increased efficiency and productivity

48

Please join us on our next session:

49

About making Choices – CaaSPv4 as SUSE‘s
empowering of Kubernetes

January 17th 2020
09:00 AM GMT

50

51

Thank you

52

Unpublished Work of SUSE LLC. All Rights Reserved.
This work is an unpublished work and contains confidential, proprietary and trade secret information of SUSE LLC.
Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope of their
assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified, translated,
abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE.
Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer
This document is not to be construed as a promise by any participating company to develop, deliver, or market a product.
It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing
decisions. SUSE makes no representations or warranties with respect to the contents of this document, and specifically
disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The development,
release, and timing of features or functionality described for SUSE products remains at the sole discretion of SUSE.
Further, SUSE reserves the right to revise this document and to make changes to its content, at any time, without
obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in this presentation are
trademarks or registered trademarks of Novell, Inc. in the United States and other countries. All third-party trademarks
are the property of their respective owners.

